# FORMATION BÂTIMENT DURABLE

GESTION DE L'ÉNERGIE : RESPONSABLE ÉNERGIE

PRINTEMPS 2023

Démarche PLAGE : les variables prises en compte dans le protocole IPMVP du « PLAGE » réglementaire

**Sven WUYTS** 







#### Sven Wuyts

+32 475 37 03 08 sven.wuyts@factor4.eu www.factor4.eu

Lange Winkelhaakstraat 26 2060 Antwerp (Belgium)



# **ÉQUIPE DE RÉVISION**

- Kristof Descheemaeker
- Sven Wuyts
- Luc Welfringer
- Ophélie Gemond
- Hervé Delporte
- · Jean-Benoit Verbeke



















- Vous connaissez les grandes lignes d'un projet PLAGE
- Vous connaissez la terminologie relative à la mesure et à la vérification des économies d'énergie
- Vous avez une vue d'ensemble des exigences en matière de mesure et de vérification d'un projet PLAGE.
- Vous pouvez évaluer les données, les variables et les facteurs qui sont pertinents et doivent être enregistrés.



**PLAGE** 

M&V - IPMVP - CMVP - PMVA - PMVE

MÉTHODES POUR LES MESURES ET LES VÉRIFICATIONS D'UN PLAGE

**VARIABLES ET FACTEURS** 

Q&R

# **PLAGE**

**PLAGE** 

# Plan Local d'Actions pour la Gestion Énergétique

- Gestionnaires de grands bâtiments
- Objectif pour les économies d'énergie
- Entreprendre une action
- Prouver le respect des objectifs





VARIABLES ET FACTEURS

# Informations générales



- https://leefmilieu.brussels/content/plage-reglementering-tools
- https://environnement.brussels/content/reglementation-plage-outils



#### **GRAND PARC IMMOBILIER?**

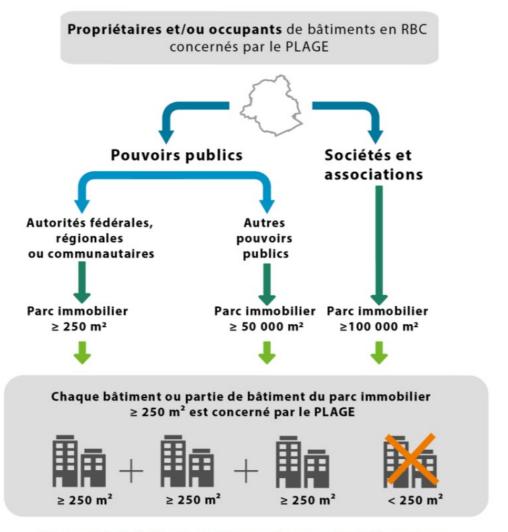



Figure 1 – Seuils d'obligation PLAGE pour chaque catégorie d'organismes



# **OBJECTIF**

**PLAGE** 

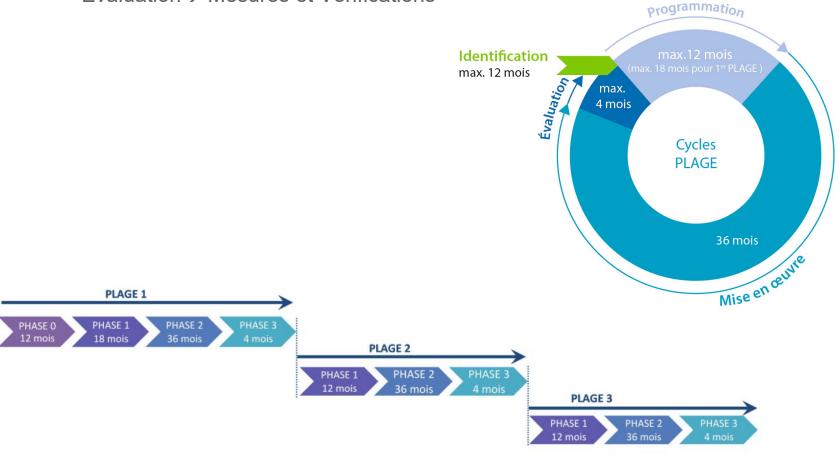
## L'objectif dépend des critères suivants

- Type de bâtiment/de zone
- Consommation énergétique actuelle

## Objectif global pour votre parc complet

▶ Généralement une économie entre 5 et 15% sur votre consommation d'énergie primaire

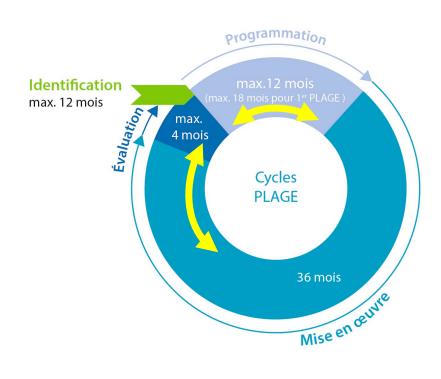





**PLAGE** 

#### ENTREPRENDRE UNE ACTION

## Les différentes phases d'un cycle PLAGE


- Environ 4 ans par cycle
- ► Evaluation → Mesures et Vérifications





# MESURER ET VÉRIFIER





VARIABLES ET FACTEURS

## M&V - TERMINOLOGIE

#### Abréviations couramment utilisées

- M&V
- IPMVP
- CMVP
  - PMVA et PMVF

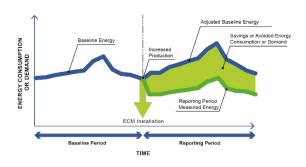
M&V : Processus de mesure et de vérification des performances énergétiques

IPMVP : International Performance and Verification Protocol (protocole international de mesure et de vérification de la performance énergétique)

CMVP: Professionnel certifié M&V

- → Performance M&V Analyst (new!)
- → Performance M&V Expert (new!)




# MOUV?













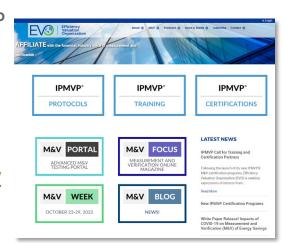






## **IPMVP**

#### **International Performance Measurement and Verification Protocol**


- Protocole indépendant pour M&V
- Principes et cadre pour un bon processus M&V
- Terminologie et concepts
- Plans de M&V conformes à IPMVP



## Précis, complet, conservateur, cohérent, pertinent et transparent

#### CMVP: « Professionnel certifié M&V »

- Formation par EVO
- Connait et utilise les méthodes et la terminologie IPMVP



https://evo-world.org/



## **IPMVP**

PLAGE

## Quelques concepts de base importants du protocole IPMVP

- ▶ Plan de M&V
- Limite de mesure
- Option A, B, C ou D
- Adaptations de la base de référence
  - Variables indépendantes
  - Facteurs statiques
- Modèles d'énergie et précision

https://evo-world.org/en/ipmvp-current/ipmvp-core-concepts





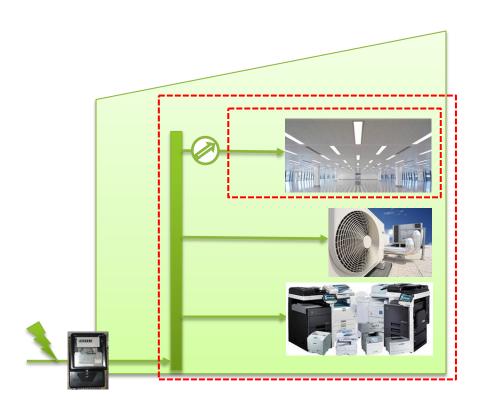
# LES ÉLÉMENTS D'UN PLAN DE M&V

#### Les 13 éléments d'un plan M&V validé par le protocole IPMVP :

- Quelle est l'intervention et son but ?
- Quelle « option » IPMVP et où mesurer ?
- Mesures de référence
- Quelle période de contrôle ?
- Base pour les adaptations
- Méthode d'analyse
- Prix de l'énergie à utiliser
- Points de mesure
- Responsabilités
- La précision attendue
- Budget M&V
- Manière de rapporter
- Surveillance qualité pour M&V






PLAGE

# LIMITE DE MESURE

# **Bâtiment entier (site, facility...)**

#### Mesure isolée

! Effets interactifs





VARIABLES ET FACTEURS

# **OPTIONS**

PLAGE

## IPMVP propose 4 options pour M&V:

- ► En fonction de la limite de mesure et des hypothèses
- Option A, B, C ou D

## Exemple : relighting : les ampoules sont remplacées par un éclairage LED

- Option A: 100 lampes 60W→20W (mesuré), sont allumées env. 7h par jour économie = (100x40x7) = 28 kWh par jour
- Option B: mesure de la consommation de l'éclairage avant et après Économies = mesurées
- Option C: enregistrement des compteurs et comparaison avant/après, pendant 1 an

Économies = mesurées

- Option D: pour une nouvelle construction par exemple, sans données de référence.
- Économies = « si des lampes normales étaient utilisées, quelle serait la différence?»



**PLAGE** 

## UTILISATION DES OPTIONS AUX ETATS-UNIS

# M&V Option Use – DOE IDIQ



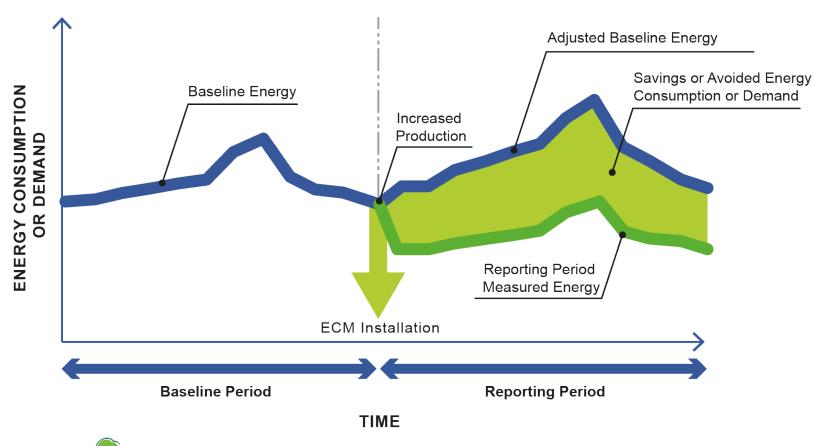
VARIABLES ET FACTEURS

# M&V Option usage as a % of total reported savings\*

| A     | В     | C    | D     |
|-------|-------|------|-------|
| 61.5% | 16.6% | 8.1% | 13.8% |

| ECM               | % of total reported cost savings |
|-------------------|----------------------------------|
| Building Controls | 17.7%                            |
| HVAC              | 17.3%                            |
| Lighting          | 16.2%                            |
| Boiler            | 10.9%                            |
| CW/HW/Steam Dist. | 7.8%                             |
| Water             | 7.4%                             |
| Chiller           | 6.8%                             |

# M&V Option usage as a % of total reported savings by ECM\*


| ECM               | %A   | %В  | %С  | %D  |
|-------------------|------|-----|-----|-----|
| Building Controls | 69%  | 15% | 0%  | 16% |
| HVAC              | 46%  | 6%  | 6%  | 43% |
| Lighting          | 89%) | 7%  | 0%  | 4%  |
| Boiler            | 46%  | 18% | 33% | 3%  |
| CW/HW/Steam Dist. | 41%  | 16% | 36% | 7%  |
| Water             | 93%  | 4%  | 2%  | 1%  |
| Chiller           | 73%  | 21% | 1%  | 5%  |

\*Based reported savings from 155 active projects under the DOE IDIQ



# ADAPTATION DE LA BASE DE RÉFÉRENCE

Savings = (Baseline Period Energy - Reporting Period Energy) ± Adjustments





# ADAPTATIONS (NON) COURANTES

## **Adaptations courantes**

Variables indépendantes

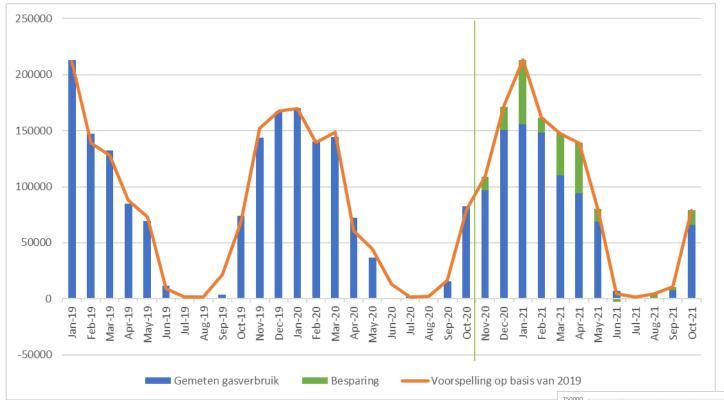
M&V

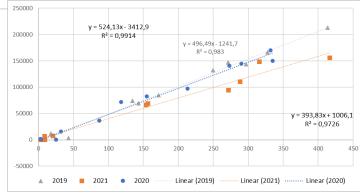
- Météo (degrés-jours, luminosité naturelle, vent, humidité relative...)
- Volumes de production
- Nombre de visiteurs
- ...



## **Adaptations non courantes**

- Facteurs statiques
  - Taille du bâtiment (m²)
  - Autres adaptations dans le bâtiment
  - Utilisation du bâtiment



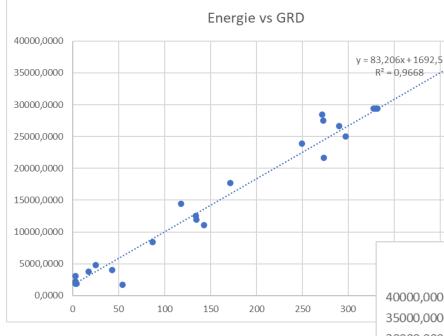


Climat intérieur (c\*v10-19)



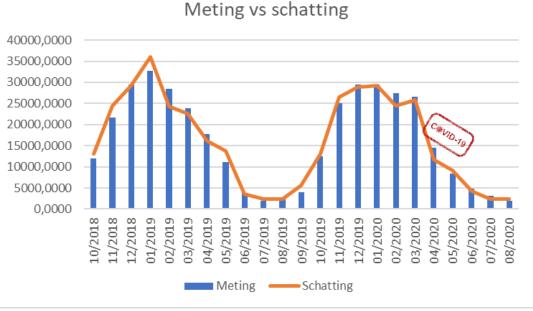


20









# FAIRE UN MODÈLE : EXEMPLE

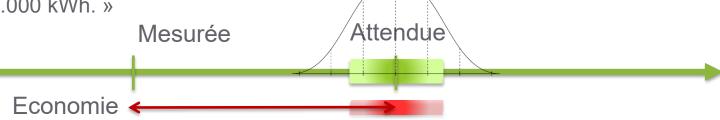
**PLAGE** 

21



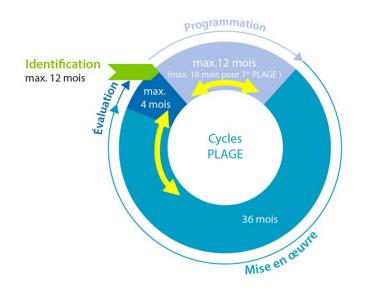





Q&R



# **PRÉCISION**


#### Précision d'un modèle énergétique

- ▶ Erreur standard (RMSE) dans la prévision de la consommation de référence
- Niveau de fiabilité (choisir par ex. 90%)
- ► Intervalle de fiabilité (ex. 5%)
- Exemple :
  - La consommation énergétique prévue est estimée à 200.000 kWh
  - « Nous sommes sûrs à 90% que la valeur se situe entre 190.000 kWh et 210.000 kWh. »
  - La consommation énergétique mesurée est de 150.000 kWh
  - Economie = consommation énergétique prévue consommation énergétique réellement mesurée
  - « Nous sommes sûrs à 90% que la valeur se situe entre 40.000 kWh et 60,000 kWh. »





# LES DIFFÉRENTES MÉTHODES POUR LE PLAGE



#### Méthode standard

- Basée sur le protocole IPMVP
- Méthodes simplifiée
- Outil de calcul sur la plateforme PLAGE



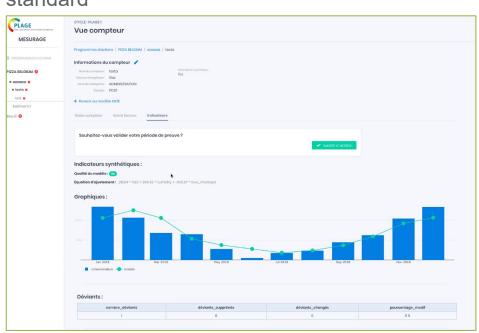


Choix pour chaque bâtiment

#### Méthode IPMVP

- Entièrement conforme au protocole **IPMVP**
- Méthode globale
- Plan et modèle de M&V propres





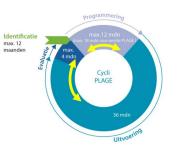

max. 12 maanden

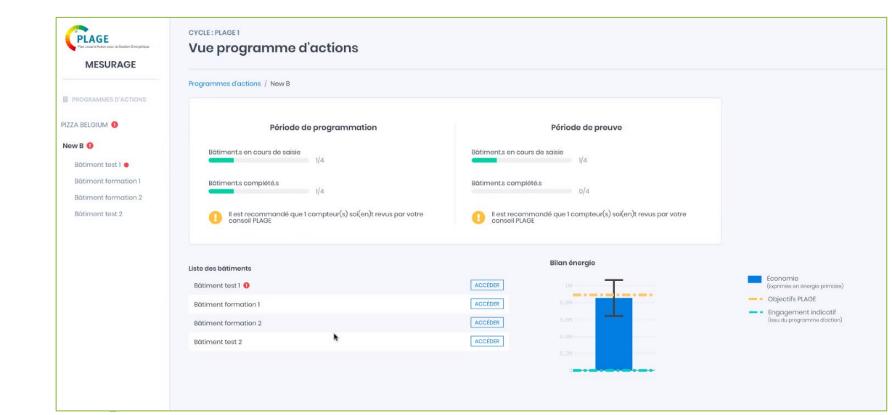
# MÉTHODE STANDARD

## Phase « programmation »

- Introduire les données de consommation sur la plateforme PLAGE
- Ajouter éventuellement des variables personnelles
  - Occupation, utilisation
  - Autre ?
- Le modèle de calcul donne
  - Précision de votre modèle
  - OK/NOK d'utiliser la méthode standard
- ► Si NOK?
  - Contacter le réviseur
  - Ev. quand même autorisé
  - Sinon méthode IPMVP




VARIABLES ET FACTEURS




# MÉTHODE STANDARD

#### Phase « Evaluation »

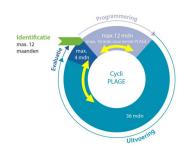
- Introduire la « nouvelle » consommation sur la plateforme PLAGE
- Le modèle de calcul donne
  - · Calcul de l'économie
  - Comparaison avec vos objectifs





# MÉTHODE IPMVP

#### Phase « programmation »


- Plan M&V conforme au protocole IPMVP
- Modèle disponible (\*)
- Faire des choix et répondre
  - Option A, B, C(, D)
  - Limite de mesure
  - Variables indépendantes
  - Facteurs statiques
  - Modèles énergétiques (c\*vip-19)
- Introduire les informations de base dans la plateforme PLAGE

#### Phase « Evaluation »

- Rédiger un rapport de M&V conformément au plan de M&V
- Introduire les résultats dans la plateforme PLAGE



\*) https://environnement.brussels/content/reglementation-plage-outils









#### ET MAINTENANT?

## Choisir une période de référence (12 mois)

- ▶ 2018-2019 : ok
- ▶ 2020-... : seulement si aucun impact des mesures anti-Covid
- Une année « représentative »

## Rechercher ou enregistrer les consommations d'énergie

- Gaz/mazout : au moins des données mensuelles
- Electricité : des données par quart d'heure

## Définir les variables indépendantes

- La base pour les modèles d'énergie
- Parfois faciles à trouver, ne doivent généralement pas être mesurées
- ► Parfois à enregistrer soi-même

#### Identifier les facteurs statiques

- « Non routine events »
- Adaptations ponctuelles si nécessaire



# VARIABLES INDÉPENDANTES

#### **Climat**

**PLAGE** 

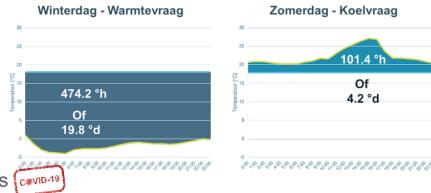
- Degrés-jours (refroidir et chauffer)
- Humidité relative
- Rayonnement solaire, vent

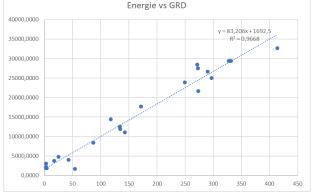
#### Utilisation du bâtiment

- Nombre de visiteurs par mois
- ► Nombre moyen de collaborateurs présents Carrolle
- Nombre de repas dans la cuisine

#### Pour pouvoir faire un modèle



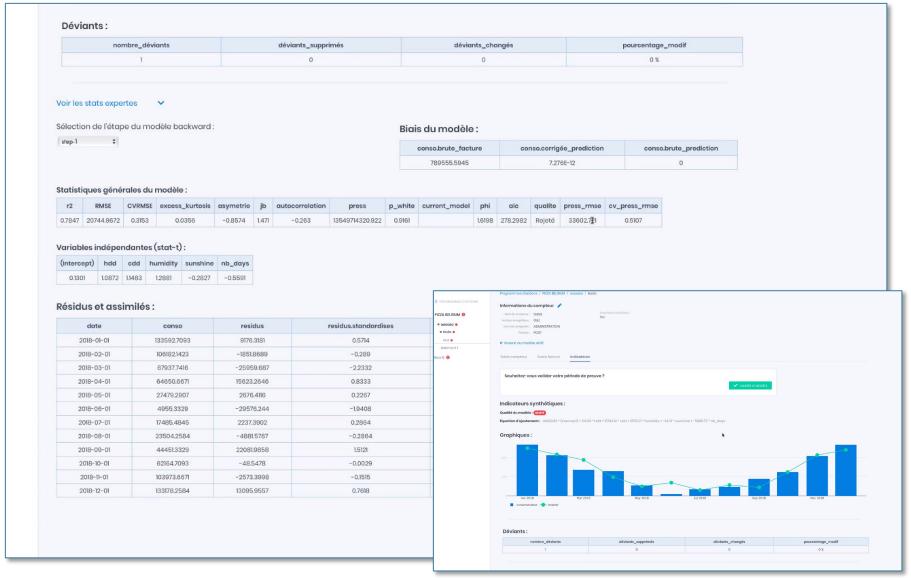

- Des données suffisantes
- Une « variation » suffisante


#### Faire un modèle

- Le module de calcul PLAGE → choisit les variables (de climat)
- Méthode IPMVP → déterminer soi-même et valider un modèle + ok du réviseur.

#### Independent Variable

Parameter that is expected to change routinely and have a measurable impact on Energy Consumption and/or Demand of a system or facility.








PLAGE M&V MÉTHODES **VARIABLES ET FACTEURS** Q&R

## 29 EXEMPLE





FORMATION BÂTIMENT DURABLE - GESTION DE L'ÉNERGIE : RESPONSABLE ÉNERGIE - PRINTEMPS 2023

| Période | : ANTE     |            |                      |                                                                        |                         |         |          |           |
|---------|------------|------------|----------------------|------------------------------------------------------------------------|-------------------------|---------|----------|-----------|
|         | Date_debut | Date_fin   | Consommation_comptet | Deduction_autorisee                                                    | Justification_deduction | deviant | TPD      | deviant_f |
| 1       | 01/01/2019 | 29/01/2019 | 169362,94            |                                                                        | ~                       | •       |          | •         |
| 2       | 30/01/2019 | 25/02/2019 | 130434               |                                                                        | ~                       | •       | -        | •         |
| 3       | 26/02/2019 | 27/03/2019 | 139555               |                                                                        | ~                       | •       | =        | •         |
| 4       | 28/03/2019 | 25/04/2019 | 87445                |                                                                        | ~                       | •       |          | •         |
| 5       | 26/04/2019 | 26/05/2019 | 75755                |                                                                        | ~                       | •       |          | •         |
| 6       | 27/05/2019 | 27/06/2019 | 46218                |                                                                        | ~                       | •       | <i>P</i> | •         |
| 7       | 28/06/2019 | 28/07/2019 | 24525                |                                                                        | ~                       | •       | <i>P</i> | •         |
| 8       | 29/07/2019 | 26/08/2019 | 25882                |                                                                        | ~                       | •       | <i>P</i> | •         |
| 9       | 27/08/2019 | 24/09/2019 | 44919                |                                                                        | ~                       | •       | <i>P</i> | •         |
| 10      | 25/09/2019 | 24/10/2019 | 65553                |                                                                        | ~                       | •       | di.      | •         |
| 11      | 25/10/2019 | 24/11/2019 | 110200               |                                                                        | ~                       | •       | di.      | •         |
| 12      | 25/11/2019 | 01/01/2020 | 150151               | 180000,00                                                              |                         | _       |          | •         |
|         |            |            |                      | 16000,00<br>14000,00<br>120000,00<br>100000,00<br>80000,00<br>60000,00 | Ш.                      |         |          |           |



#### Consommation attendue = 391 x HDD + 37396 kWh

#### Statistiques de base :

Qualité du modèle : OK

**Équation d'ajustement:** 37396.23 \* (Intercept) + 391.34 \* hdd

Lapériode de référencesaisie fait un an.

La date de début de lapériode de référencesaisie est conforme avec la date depériode de référencesaisie dans PLAGE. La date de fin de lapériode de référencesaisie est conforme avec la date depériode de référencesaisie dans PLAGE. Les données de lapériode de référencesont contigues.

#### **Graphiques:**



Koelgraaddagen, Aantal dagen, Zoninstraling, Vochtigheid hebben geen of te weinig significante invloed...

| Variables indépendantes (stat-t): |        |        |          |          |         |  |  |
|-----------------------------------|--------|--------|----------|----------|---------|--|--|
| (Intercept)                       | hdd    | cdd    | humidity | sunshine | nb_days |  |  |
| 2.8985                            | 6.8545 | -1.303 | -2.0876  | -2.266   | -0.8138 |  |  |



#### Période: ANTE Date\_debut Date\_fin Consommation\_compted Deduction\_autorisee Justification\_deduction deviant **TPD** deviant\_f 01/01/2019 29/01/2019 1 169362,94 25/02/2019 30/01/2019 2 130434 27/03/2019 3 26/02/2019 139555 25/04/2019 28/03/2019 4 87445 26/04/2019 26/05/2019 75755 5 27/05/2019 27/06/2019 6 46218 P 28/06/2019 28/07/2019 7 24525 29/07/2019 26/08/2019 8 25882 24/09/2019 27/08/2019 9 44919 25/09/2019 24/10/2019 10 65553 25/10/2019 24/11/2019 110200 11 25/11/2019 01/01/2020 12 15015 180000,00 160000,00 140000,00 120 120000,00 100 100000,00 80 80000,00 60 60000,00 40000,00



20000,00

0.00

8 9

10 11 12

4 5

20

9

## Consommation attendue = 372 x HDD + 410 x occupation - 718 kWh

#### Statistiques de base:

Qualité du modèle : OK

Équation d'ajustement: 372.85 \* hdd + 410.39 \* Bezetting\_Occupation + -718.84 \* new\_intercept

Lapériode de référencesaisie fait un an.

La date de début de lapériode de référencesaisie est conforme avec la date depériode de référencesaisie dans PLAGE. La date de fin de lapériode de référencesaisie est conforme avec la date depériode de référencesaisie dans PLAGE. Les données de lapériode de référencesont contiques.

#### **Graphiques:**





#### Consommation attendue = 391 x HDD + 37396 kWh

#### Statistiques de base:

Qualité du modèle : oĸ

**Équation d'ajustement:** 37396.23 \* (Intercept) + 391.34 \* hdd

Lapériode de référencesaisie fait un an.

La date de début de lapériode de référencesaisie est conforme avec la date depériode de référencesaisie dans PLAGE. La date de fin de lapériode de référencesaisie est conforme avec la date depériode de référencesaisie dans PLAGE. Les données de lapériode de référencesont contigues.

#### **Graphiques:**





#### Modèle 1

#### Statistiques générales du modèle :

| r2     | RMSE       | CVRMSE | excess_kurtosis | asymetrie | jb     | autocorrelation | press           | p_white | current_model | phi    | aic      | qualite |
|--------|------------|--------|-----------------|-----------|--------|-----------------|-----------------|---------|---------------|--------|----------|---------|
| 0.9241 | 13794.1269 | 0.1547 | 0.2146          | 0.5473    | 0.6221 | 0.1653          | 2620690699.9891 | 0.3952  | 1             | 1.0713 | 266.6346 | OK      |

#### Variables indépendantes (stat-t):

| (Intercept) | hdd     |
|-------------|---------|
| 6.256       | 11.6124 |

#### Modèle 2

#### Statistiques générales du modèle :

| r2     | RMSE      | CVRMSE | excess_kurtosis | asymetrie | jb     | autocorrelation | press          | p_white | current_model | phi    | aic      | qualite |
|--------|-----------|--------|-----------------|-----------|--------|-----------------|----------------|---------|---------------|--------|----------|---------|
| 0.9951 | 7383.8581 | 0.0828 | -0.4983         | 0.3053    | 0.3105 | -0.0323         | 815361847.1836 | 0.2047  | 1             | 1.1164 | 251.7716 | OK      |

#### Variables indépendantes (stat-t):

| hdd     | Bezetting_Occupation | new_intercept |
|---------|----------------------|---------------|
| 20.3483 | 12.7034              |               |



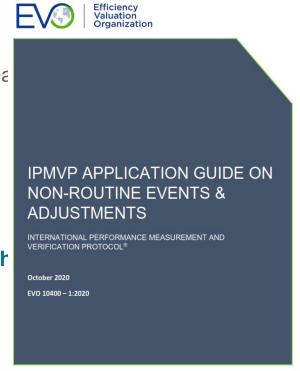
# **FACTEURS STATIQUES**

#### Static Factor

Those characteristics of a facility which affect Energy Consumption and Demand, within the defined Measurement Boundary, that are not expected to change, and were therefore not included as independent variables. If they change, Non-routine Adjustments need to be calculated to account for these changes.

**VARIABLES ET FACTEURS** 

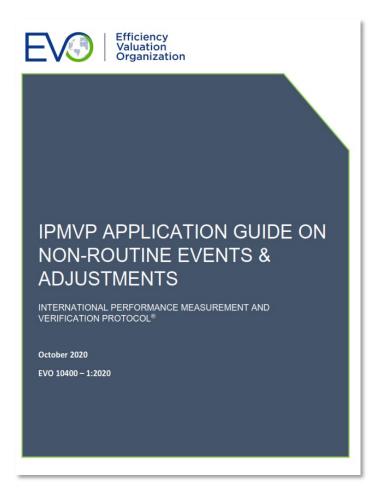
## Propriétés du bâtiment


- Surface au sol chauffée
- Climat ou confort intérieur
  - Température
  - Débits ou stratégie de ventilation (carvid-19)



- ► Changement de fonction (ex. salle de réunion → burea

#### **Facteurs externes**


- Evénements spéciaux
- (Grands) changements ponctuels dans l'utilisation
- → Généralement dans le cadre d'un « événement non h





PLAGE

## **FACTEURS STATIQUES**



#### Détecter les « événements » non habituels

Distinction entre les changements temporaires et permanents

## Les manières les plus courantes de faire des adaptations

- Ignorer les données
- Utiliser des compteurs intermédiaires
- ► Redéfinir le modèle de référence (C#VID-19)



- Méthode de régression
- Simulation calibrée
- Calculs (exception !!)

#### **Autres solutions**

- « Backcasting »
- « Chaining »
- Changement d'option (C→ A)



# CE QU'IL FAUT RETENIR DE L'EXPOSÉ



- PLAGE...
  - ... est en fait un « code de bonne pratique »
  - ... Suit la méthode « plan-do-check-act »
- ► Commencez DES MAINTENANT (l'année dernière en fait...) et enregistrez au moins une fois par mois
  - Consommations d'énergie
  - <u>Tous</u> les paramètres qui ont/peuvent avoir une influence sur la consommation énergétique
- Méthode standard ou IPMVP ?
  - · La plupart des bâtiments : standard
    - o L'outil de calcul recherche le meilleur modèle par rapport aux variables standard
    - o Possibilité limitée d'ajouter des variables supplémentaires
  - Cas spéciaux : IPMVP
    - o Déménagement, gros changements...
    - o Une approbation du réviseur est toujours nécessaire
    - o Cherchez du soutien auprès d'un CMVP (PMVA ou PMVE)



#### **Sven WUYTS**

Factor4







# MERCI POUR VOTRE ATTENTION

