FORMATION BATIMENT DURABLE

GESTION DES
SURCHAUFFES ESTIVALES

PRINTEMPS 2024

Limiter les apports

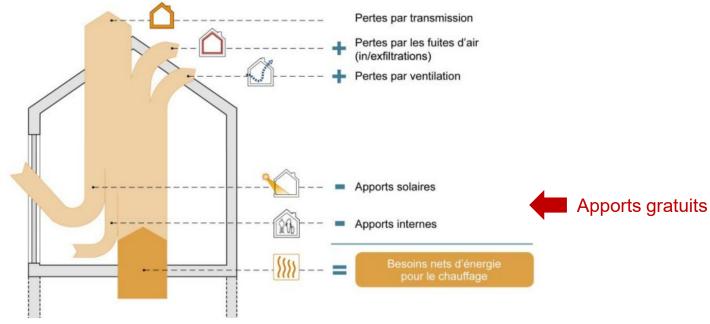
- Présenter les origines possibles des apports et les enjeux liés au contrôle
- Définir la notion d'apport solaire et décrire les différentes solutions possibles pour les maîtriser
- Définir la notion d'apport interne et décrire les différentes solutions possibles pour les maîtriser

BILAN THERMIQUE

APPORTS SOLAIRES
APPORTS INTERNES

ORIGINES DES APPORTS

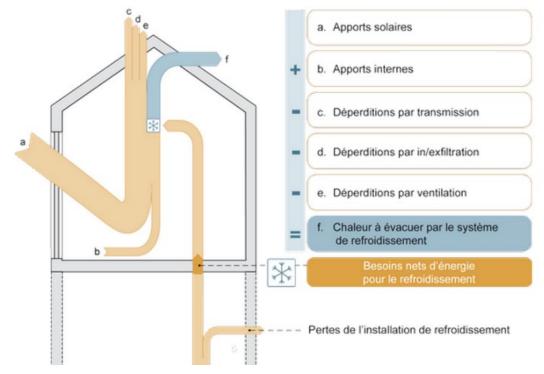
Dans un bilan énergétique, on tient compte de deux types d'apports


- solaires
- ▶ internes = lié aux activités (personnes et équipements) dans le bâtiment

PARAMÈTRES À PRENDRE EN COMPTE

Situation en période de chauffage

- Les apports solaires et internes sont considérés comme des apports « gratuits »
- Dans un bilan énergétique, ils compensent pour partie les pertes



PARAMÈTRES À PRENDRE EN COMPTE

Situation en période de non-chauffage

- Les apports solaires et internes sont considérés comme des apports « excédentaires », quand ils sont supérieurs aux besoins
- Dans un bilan énergétique, ils sont pour partie compenser par des pertes

Source: Guide PEB 2021 Région Wallonne

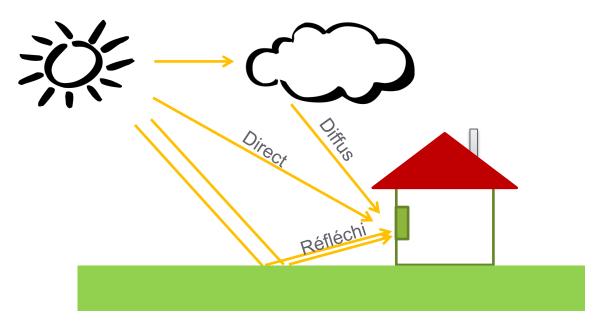
PARAMÈTRES À PRENDRE EN COMPTE

Stratégie de conception

- Dans la conception d'un projet, les deux périodes doivent être prises en compte, avec pour objectif
 - En période de non-chauffage > de limiter autant que possible les apports
 - En **période de chauffage** > de favoriser les apports
 - ⇒ Les solutions qui permettent un ajustement en fonction des périodes de l'année sont plus optimales

BILAN THERMIQUE

APPORTS SOLAIRES

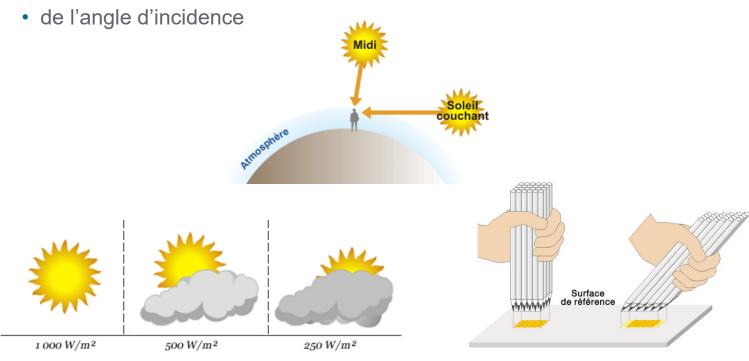

- Introduction
- Parois opaques
- Parois transparentes / translucides
- Outils

APPORTS INTERNES

INTRODUCTION

Rayonnement solaire

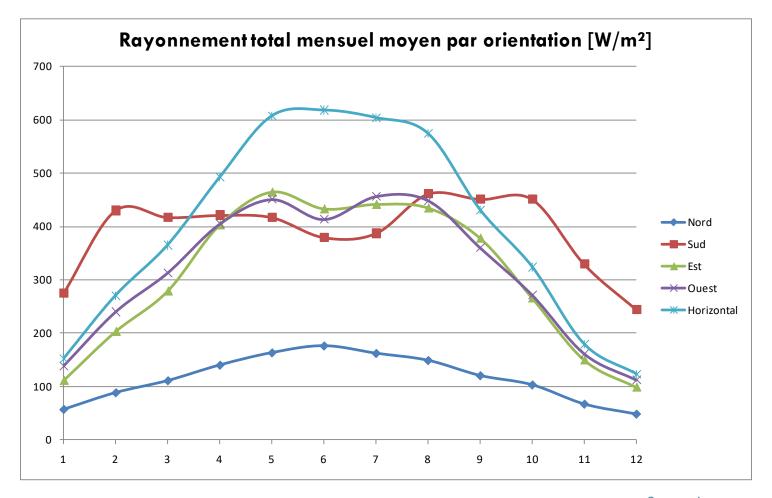
- Le rayonnement solaire qui arrive sur une paroi est divisé en trois parties
 - Le rayonnement diffus
 - Le rayonnement direct
 - · Le rayonnement réfléchi par le sol


Source: écorce

INTRODUCTION

Rayonnement solaire

- Le rayonnement solaire reçu par une surface varie en fonction
 - de la position du soleil
 - de la couverture nuageuse (ici à la surface de la terre pour un rayonnement perpendiculaire)



INTRODUCTION

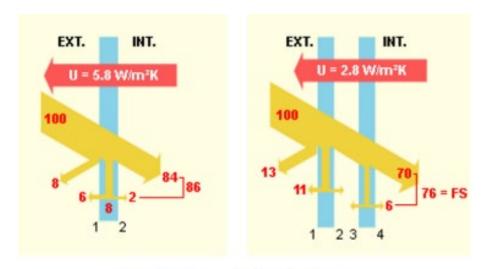
Rayonnement solaire (Uccle)

Source : écorce

BILAN THERMIQUE

APPORTS SOLAIRES

- ► Introduction
- Parois transparentes / translucides
- Parois opaques
- Outils

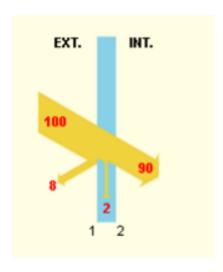

APPORTS INTERNES

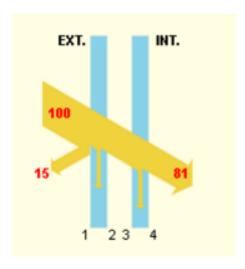
PAROIS TRANSPARENTES / TRANSLUCIDES

Caractéristiques principales d'un vitrage

- Energie
 - Facteur solaire (g, FS) = fraction de l'énergie solaire incidente qui passe au travers du vitrage
 - Coefficient de transmission thermique (Ug) > quantifie le transfert de chaleur à travers le vitrage

Simple vitrage et double vitrage.


Source : énergie plus

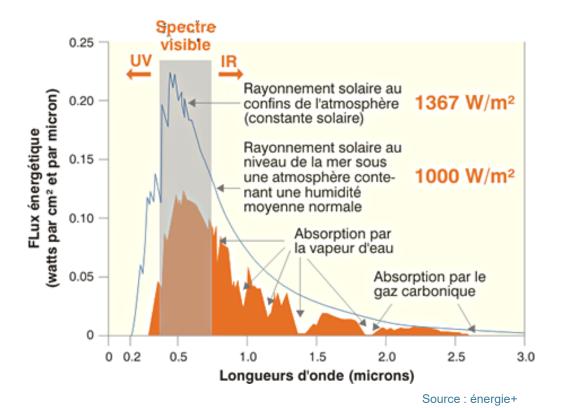


PAROIS TRANSPARENTES / TRANSLUCIDES

Caractéristiques principales d'un vitrage

- Lumière
 - Coefficient de transmission lumineuse (Tv) = fraction du rayonnement solaire visible qui passe au travers du vitrage

Simple vitrage, TL = 90 % et double vitrage TL = 81 %.


Source : énergie plus

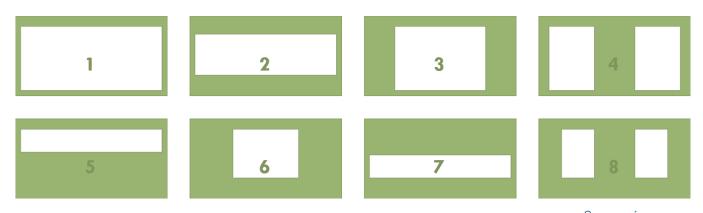
PAROIS TRANSPARENTES / TRANSLUCIDES

Effet de serre


Les apports solaires se transforment en charges thermiques au passage de la paroi vitrée

Optimiser l'orientation du bâtiment et des ouvertures

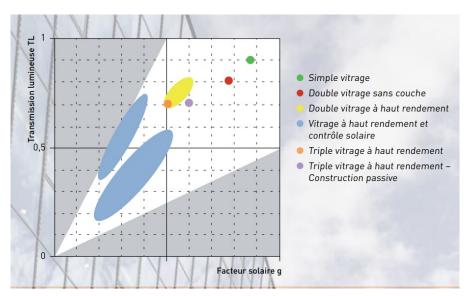
L'exposition à la lumière du soleil dépend de la date, de l'heure et de l'orientation



Source: Guide Bâtiment Durable

Optimiser la taille et la forme des ouvertures

- Plus la taille de l'ouverture est petite,
 moins importants sont les apports (été et hiver)...
 ... mais également moins elle apportera de lumière.
 - ⇒ Tenir compte des besoins en éclairage naturel!
- Les configurations ci-dessous sont classées en fonction de leur capacité à transmettre la lumière naturelle dans le local, de la meilleure (1) à la moins bonne (8)



Opter pour un vitrage sélectif

- ▶ Pour une feuille de verre, quand le facteur solaire baisse, la transmission lumineuse baisse généralement aussi sauf à utiliser des coatings... > bcp de choses sont possibles mais attention au coût !
- Effet permanent (été et hiver)
 - Tenir compte des besoins en éclairage naturel!

- Quels sont les différents types de protections solaires existants ?
 - **⇒** Brainstorming

- Dispositif parallèle à la façade
 - Store vénitien / en toile volet panneau coulissant
 - Mobile (manuel ou motorisé)
 - Efficace de l'E à O (en passant par le S)

Source: Guide Bâtiment Durable

- Store vénitien
 - Fragile
 - Adaptation de la protection à la course du soleil (via lamelles orientables)
 > grande efficacité
 - Permet de maintenir une vue vers l'extérieur

Prévoir des protections solaires <u>extérieures</u>

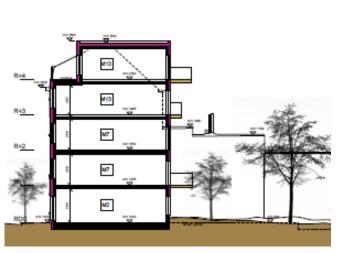
- · Store en toile
 - Fragile
 - Performance variable en fonction de sa couleur et de la densité du maillage
 - Différentes sortes (écran / à projection ou marquise /marquisolette)

Source : Guide Bâtiment Durable

Prévoir des protections solaires <u>extérieures</u>

- Panneau coulissant
 - Robuste (solide et stable au vent)
 - Permet de maintenir une vue vers l'extérieur

Source: Yvan Glavie



Prévoir des protections solaires <u>extérieures</u>

- ► Dispositif perpendiculaire à la façade horizontal ou oblique
 - Casquette débords de toit auvent balcon brise-soleil battée profonde
 - Fixe
 - Efficace du SE au SO (en passant par le S) ne protège que du rayonnement direct

016

Source: STEKKE + FRAAS

Prévoir des protections solaires <u>extérieures</u>

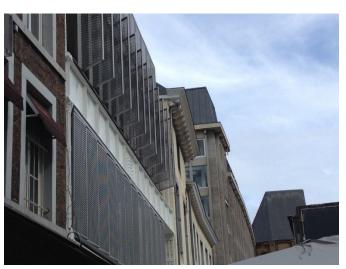
- Casquette débords de toit auvent balcon brise-soleil battée profonde
 - Robuste (solide et stable au vent)
 - Permet de maintenir une vue vers l'extérieur
 - Dimensions à corréler avec les dimensions de l'ouverture

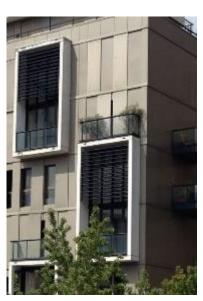
Source: Vitor Pinto / unsplash.com

Source : Littleha / wikimedia.org

- ► Dispositif perpendiculaire à la façade horizontal ou oblique
 - · Store à banne
 - Mobile (manuel ou motorisé)
 - Efficace du SE au SO (en passant par le S) ne protège que du rayonnement direct

- Dispositif perpendiculaire à la façade vertical
 - Brise-soleils volets battées profondes
 - Fixe ou mobile (manuel ou motorisé)
 - Efficace à l'E et à l'O ne protège que du rayonnement direct





- Brise-soleils volets battées profondes
 - Robuste (solide et stable au vent)
 - Permet de maintenir une vue vers l'extérieur
 - Dimensions à corréler avec les dimensions de l'ouverture

Prévoir des protections solaires intégrées

- Dispositif parallèle à la façade
 - Store vénitien ou écran entre deux feuilles de verre
 - Mobile (manuel ou motorisé)
 - Efficace de l'E à O (en passant par le S) Mais moins efficace qu'une protection extérieure
 - Système facile à intégrer en rénovation
 - Fragile mais protégé de l'intérieur et de l'extérieur par une feuille de verre
 - Réparation complexe (accessibilité réduite)

Prévoir des protections solaires intérieures ?

Les protections solaires intérieures ne constituent pas un moyen efficace de lutte contre les surchauffes

Comment choisir les protections solaires adéquates ?

▶ Etablissons ensemble une synthèse en se focalisant sur le contrôle des apports solaires !

	Е	SE	S	so	0
Dispositif parallèle à la façade					
Dispositif perpendiculaire à la façade horizontal ou oblique					
Dispositif perpendiculaire à la façade vertical					

Comment choisir les protections solaires adéquates ?

Etablissons ensemble une synthèse en se focalisant sur le contrôle des apports solaires!

	Е	SE	S	so	0
Dispositif parallèle à la façade	X	Х	X	X	Х
Dispositif perpendiculaire à la façade horizontal ou oblique		Χ	X	Х	
Dispositif perpendiculaire à la façade vertical	X				Х

- ⇒ Valable pour les protections extérieures et intégrées !
- ⇒ Pour les dispositifs perpendiculaires, la géométrie va conditionner l'efficacité!

Comment choisir les protections solaires adéquates ?

- ► Tableau comparatif issu du Guide Bâtiment Durable (https://www.guidebatimentdurable.brussels/)
 - Dispositifs comparés
 - Protection solaire intérieure / intégrée / extérieure
 - Environnement

Légende

	Impact négatif	Impact neutre	Impact positif		
Important	XXX	000	**		
Moyen	XX		√ √		
Faible	Х	0	✓		
Sans objet					

Comment choisir les protections solaires adéquates ?

► Tableau comparatif issu du Guide Bâtiment Durable

	Protection solaire intérieure			Protection solaire intégrée		Protection solaire extérieure			Environnement		
	Store enroulable	Store à lamelles	Films adhésifs	Store à lamelles	Vitrage solaire	Fixe	Store enrou- lable	Store à lamelles	Espace tampon	Pro- tection natu- relle	Environ- nement voisin
			***************************************)					Net m		
Aspects environn	ementaux	,									
Efficacité contre les surchauffes	✓	√	✓	V V	V V	111	111	111	V V	V	V V
Coût en énergie grise	XX	XX	XX	XX	Х	XXX	XX	XX	XXX	Х	-

Comment choisir les protections solaires adéquates ?

► Tableau comparatif issu du Guide Bâtiment Durable

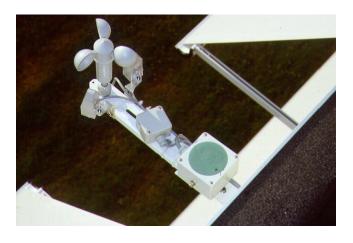
	Protection solaire intérieure			Protection solaire intégrée		Protection solaire extérieure			Environnement		
	Store enroulable	Store à lamelles	Films adhésifs	Store à lamelles	Vitrage solaire	Fixe	Store enrou- lable	Store à lamelles	Espace tampon	Pro- tection natu- relle	Environ- nement voisin
			**************************************	Q					Nit w		
Aspects économiq	ues										
Coût d'investissement	×	Х	Х	XX	XX	XX	XX	XX	XXX	Х	-
Coût opérationnel	XX	XX	Х	Х	Х	XX	ххх	ххх	Х	Х	-

Comment choisir les protections solaires adéquates ?

► Tableau comparatif issu du Guide Bâtiment Durable

	Protection solaire intérieure			Protectio intég		Protection solaire extérieure			Environnement		
	Store enroulable	Store à lamelles	Films adhésifs	Store à lamelles	Vitrage solaire	Fixe	Store enrou- lable	Store à lamelles	Espace tampon	Pro- tection natu- relle	Environ- nement voisin
			**************************************	31111111111111111111111111111111111111			-	Y	New March		
Aspects sociocult	urels										
Esthétique		0			0	000	0	0	000	000	-
Contrôle de l'opacité	√√	111	✓	///	✓	√	//	111	✓	V	-
Protection vis à vis des vues extérieures	VV	VV	V V	///	✓	√	VV	VV	√ √	√ √	√

Comment choisir les protections solaires adéquates ?


► Tableau comparatif issu du Guide Bâtiment Durable

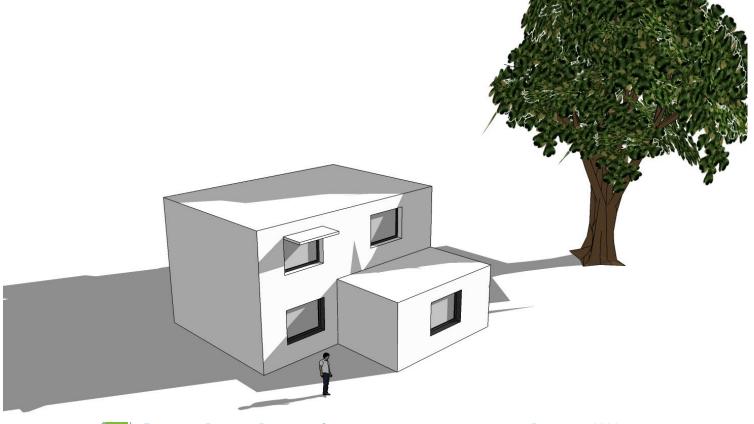
	Protection solaire intérieure				Protection solaire intégrée Protection		solaire e	extérieure	Environnement		
	Store enroulable	Store à lamelles	Films adhésifs	Store à lamelles	Vitrage solaire	Fixe	Store enrou- lable	Store à lamelles	Espace tampon	Pro- tection natu- relle	Environ- nement voisin
				Энинин					Net m		
Aspects sociocult	urels										
Efficacité contre l'éblouissement	///	111	V V	111	V V	✓	///	111	V V	V V	✓
Favorable à la lumière naturelle	V V	111	√	VV	V V	///	11	111	✓	√√	V V

Comment choisir les protections solaires adéquates ?

- Autres critères (non repris dans le tableau)
 - Possibilité de régulation
 - FIXE > pas de régulation possible
 - MOBILE > régulation possible (par l'action de l'homme, si manuel / en connectant à une station météo, si motorisé)
 - Intégration architecturale
 - Robustesse

STATION METEO

- Gestion automatique en fonction de l'ensoleillement
- Protection en cas de vent trop fort

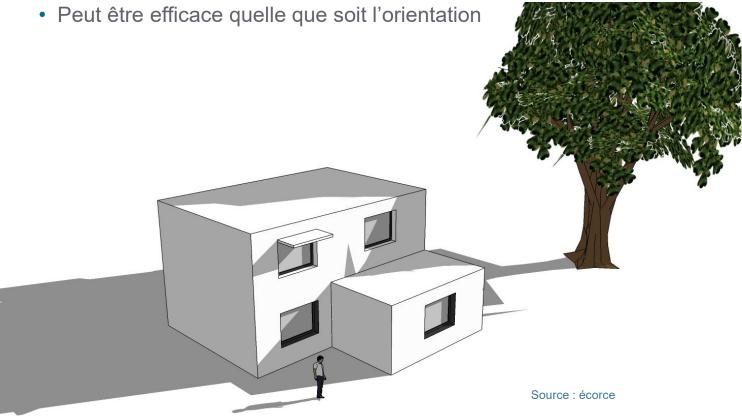


Comment choisir les protections solaires adéquates ?

► Informations plus complètes sur les différents dispositifs possibles dans le <u>Guide Bâtiment Durable</u>

Profiter de l'ombrage voisin environnant

- Bâtiment
 - Fixe
 - Peut être efficace quelle que soit l'orientation



APPORTS INTERNES

PAROIS TRANSPARENTES / TRANSLUCIDES > SOLUTIONS

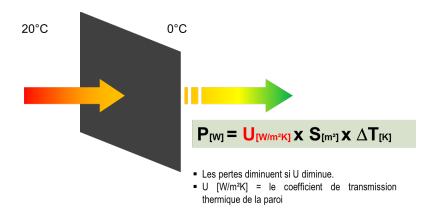
Profiter de l'ombrage voisin environnant

- Végétation
 - Arbres haie plantes grimpantes
 - Effet non permanent (en fonction des saisons ou dans le temps)

BILAN THERMIQUE

APPORTS SOLAIRES

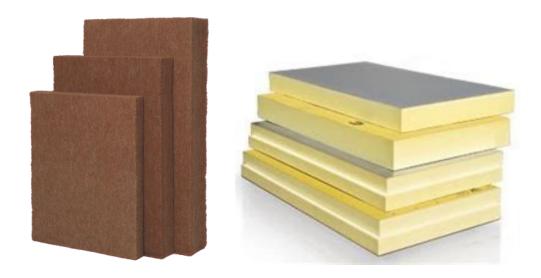
- ► Introduction
- Parois transparentes / translucides
- Parois opaques
- Outils


APPORTS INTERNES

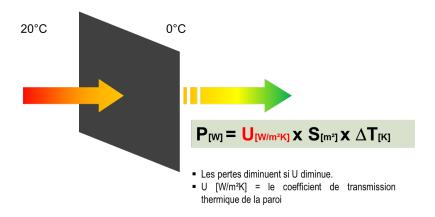
PAROIS OPAQUES

Transfert de chaleur au travers d'une paroi

- ▶ Il peut se faire dans les deux sens
 - De l'intérieur vers l'extérieur (hiver)
 - De l'extérieur vers l'intérieur (été)



- Il varie en fonction
 - De la performance thermique de la paroi
 - De la différence de température entre l'extérieur et l'intérieur
- ▶ P [W] exprime les pertes (qui varient également en fonction de la superficie)

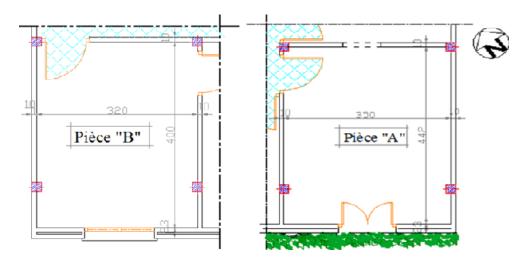

Limiter le transfert de chaleur en isolant la paroi

► Si U diminue > P diminue (par la réduction du transfert de chaleur)

Limiter le transfert de chaleur en protégeant la paroi du rayonnement incident

► Si ∆T diminue > P diminue (par la réduction du transfert de chaleur)

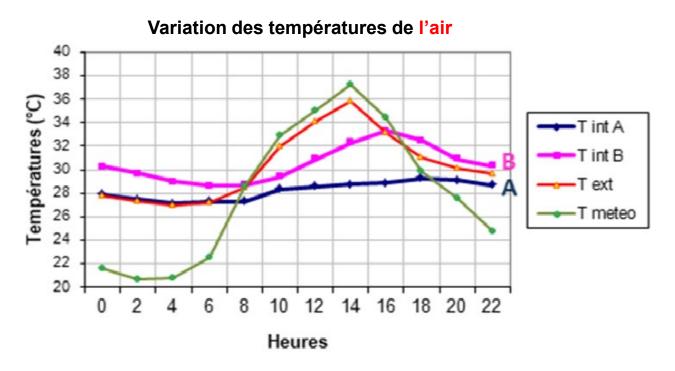
Limiter le transfert de chaleur en protégeant la paroi du rayonnement incident


Végétaliser la paroi

Source: www.flickr.com

Limiter le transfert de chaleur en protégeant la paroi du rayonnement incident

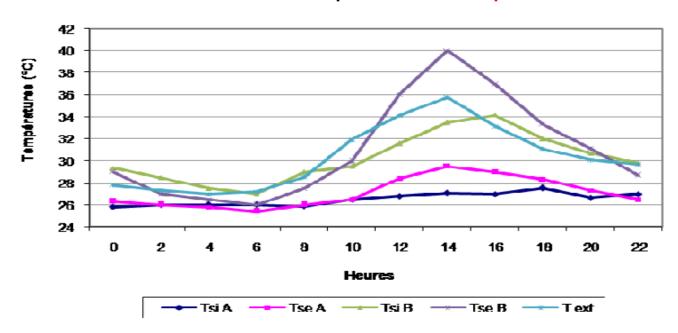
- Végétaliser la paroi > Résultats d'une étude de cas*
 - Analyse du comportement thermique des parois extérieures de deux pièces (A et B) durant une période défavorable de l'été
 - Paroi extérieure **pièce A** couverte de plantes grimpantes
 - Paroi extérieure pièce B exposée aux radiations solaires



* Benhalilou Karima, Abdou Saliha, 2010, Evaluation des transferts thermiques à travers la paroi végétalisée

Limiter le transfert de chaleur en protégeant la paroi du rayonnement incident

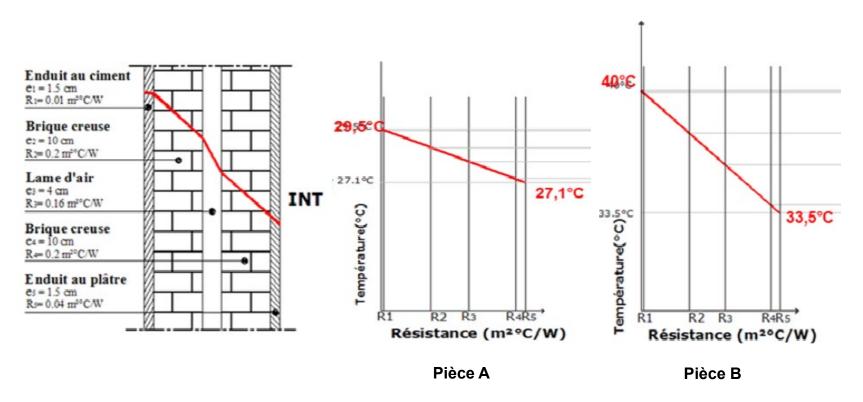
Végétaliser la paroi > Résultats d'une étude de cas*


⇒ La pièce A se comporte thermiquement mieux (températures moins élevées)

Limiter le transfert de chaleur en protégeant la paroi du rayonnement incident

Végétaliser la paroi > Résultats d'une étude de cas*

Variation des températures surfaciques


⇒ Les températures surfaciques de la pièce A sont moins élevées

Limiter le transfert de chaleur en protégeant la paroi du rayonnement incident

Végétaliser la paroi > Résultats d'une étude de cas*

Tracé du gradient thermique des deux parois

Limiter le transfert de chaleur en protégeant la paroi du rayonnement incident

Végétaliser la paroi > Résultats d'une étude de cas* > CONCLUSIONS

- ⇒ Façade végétalisée = stratégie efficace pour le refroidissement passif
- ⇒ Réduction des températures de surface et celles de l'air intérieur et extérieur

- Les simulations sont réalisées pour une paroi extérieure non isolée
 - > les conclusions seraient moins favorables si la paroi était... isolée!

⇒ La végétalisation d'une paroi <u>ne</u> peut <u>pas</u> se substituer à son isolation!

Limiter le transfert de chaleur en protégeant la paroi du rayonnement incident

- Autres solutions
 - Créer un bardage devant une lame d'air ventilée
 - Opter pour un revêtement clair

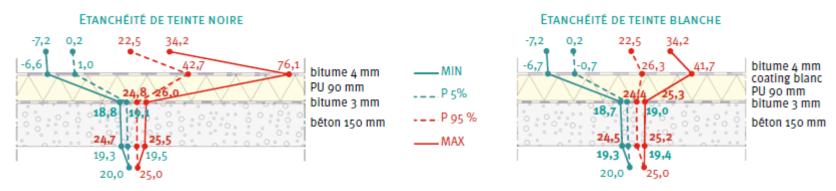


Fig. 13 Simulations thermiques effectuées sur deux complexes de toiture identiques munis d'une étanchéité de teinte différente.

Source: Buildwise (NIT 280)

⇒ Quand la toiture est isolée, sur la face <u>intérieure</u> de la toiture, les températures atteintes sont les mêmes dans les deux cas de figure !

Limiter le transfert de chaleur en protégeant la paroi du rayonnement incident

Qu'en est-il de la face extérieure ?

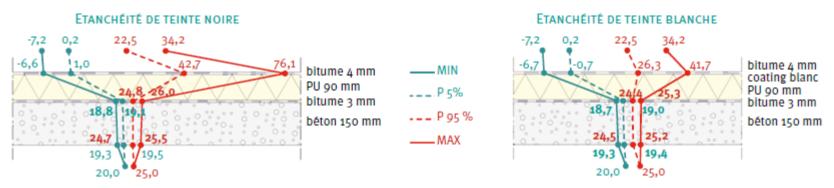


Fig. 13 Simulations thermiques effectuées sur deux complexes de toiture identiques munis d'une étanchéité de teinte différente.

Source: Buildwise (NIT 280)

- ⇒ Sur la face <u>extérieure</u> de la toiture, les températures atteintes sont très différentes
- ⇒ Cela peut contribuer positivement à la réduction de l'effet îlot de chaleur en centre urbain ! > Solution pour limiter les apports !

BILAN THERMIQUE

APPORTS SOLAIRES

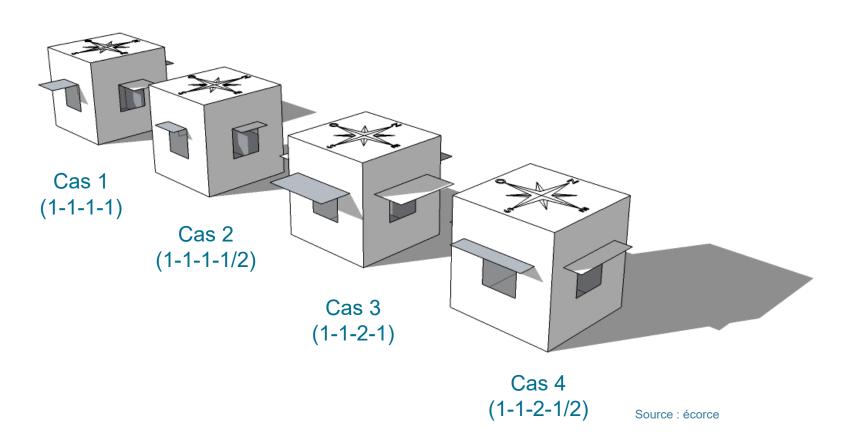
- ► Introduction
- Parois transparentes / translucides
- Parois opaques
- Outils

APPORTS INTERNES

Quelques outils utiles

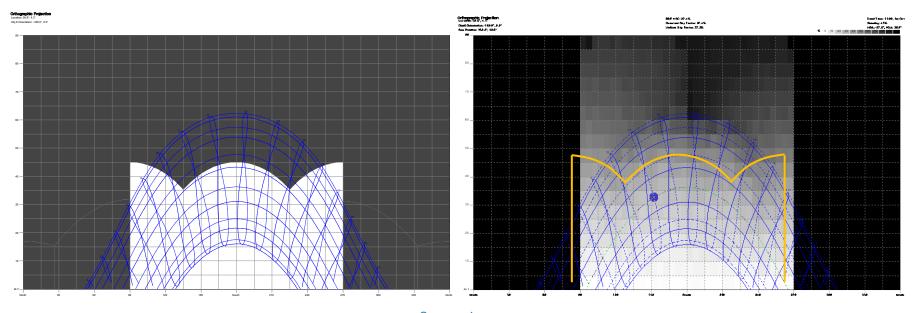
- https://susdesign.com/
 - > propose des outils pour dimensionner différents types de protections solaires fixes
- https://www.sketchup.com/
 - > permet de visualiser l'ombrage en fonction du temps
- https://sourceforge.net/projects/carnaval/
 - > logiciel fournissant le masque solaire du terrain en fonction des coordonnées géographiques
- Il existe également des logiciels payants

Protections solaires fixes : dimensionnement grâce au diagramme solaire


- Objectif : créer un ombrage lorsque cela est nécessaire <u>uniquement</u> (heure, saison, orientation)
- ► En pratique : il y a toujours un compromis à faire

Les protections fixes sont peu efficaces sur le rayonnement diffus (prépondérant en Belgique)

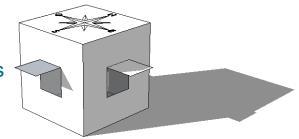
Protections solaires fixes : dimensionnement grâce au diagramme solaire



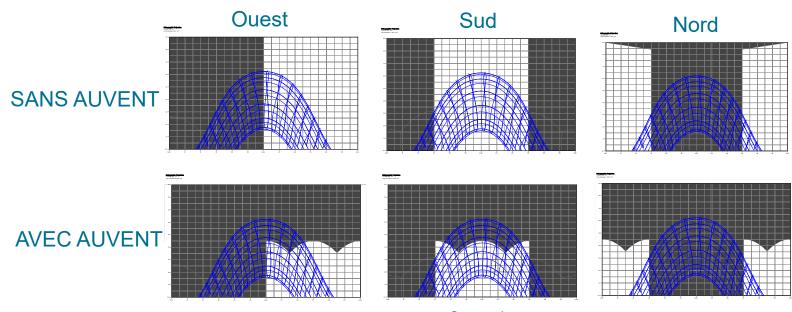
(hauteur fenêtre – largeur fenêtre – profondeur auvent – largeur auvent)

Protections solaires fixes : dimensionnement grâce au diagramme solaire

Deux types de diagrammes (SUD)



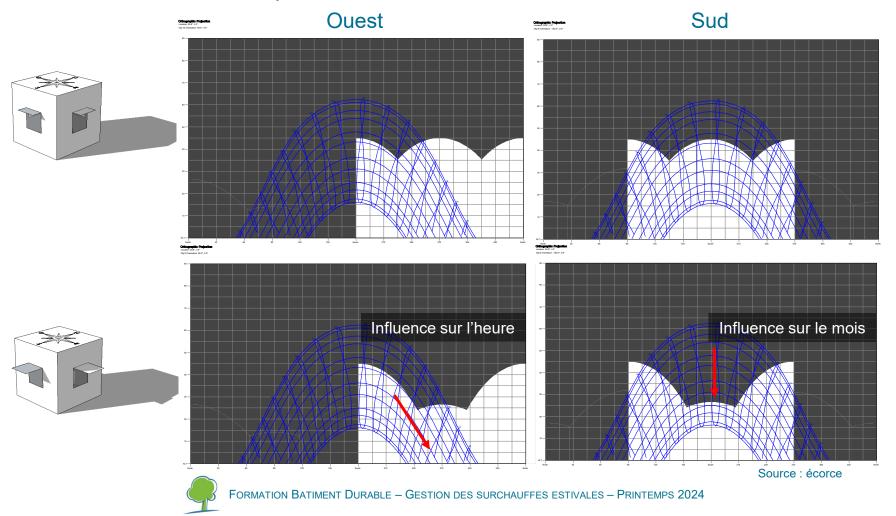
Source : écorce

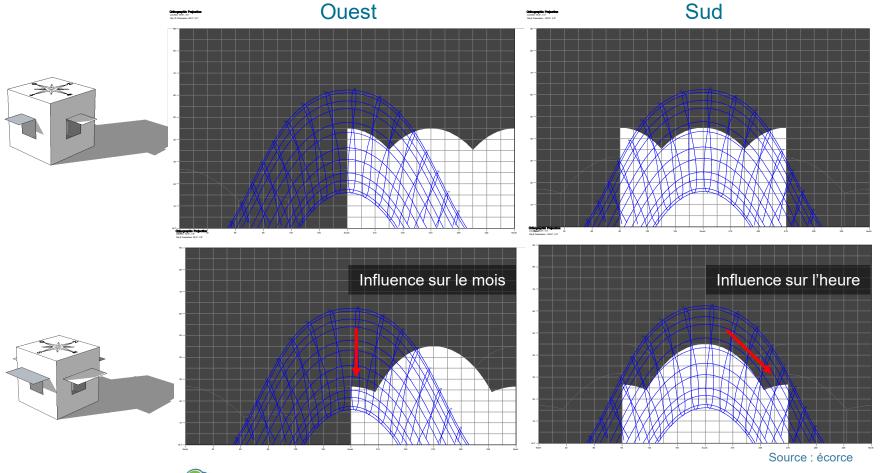


Protections solaires fixes : dimensionnement grâce au diagramme solaire

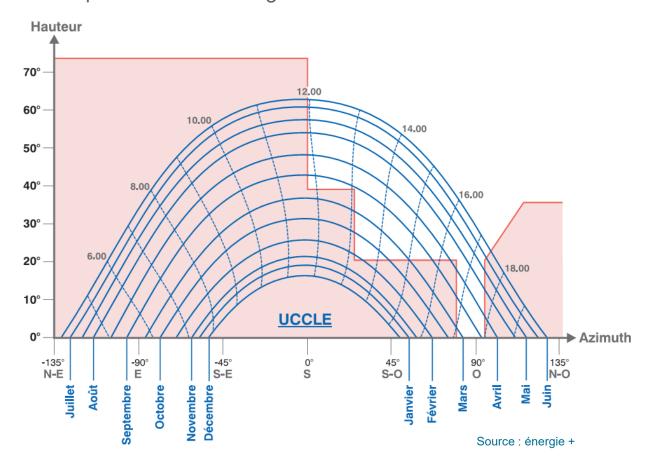
- Zone blanche: apports
- Zone noire: pas d'apports

- Lignes verticales: heures
- Lignes courbes: mois




Protections solaires fixes : dimensionnement grâce au diagramme solaire

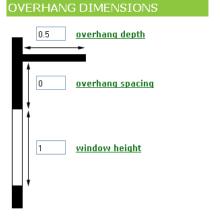
► Influence de la profondeur

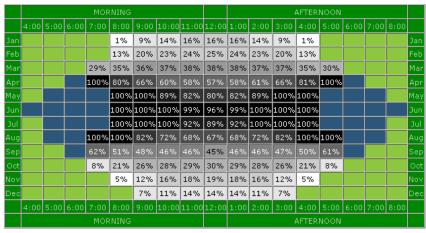

Protections solaires fixes : dimensionnement grâce au diagramme solaire

Influence de la largeur

Protections solaires fixes : dimensionnement grâce au diagramme solaire

▶ Il ne faut pas oublier l'ombrage des bâtiments voisins !



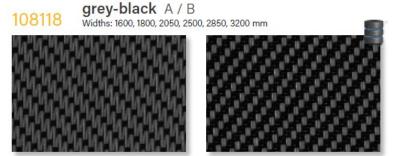


Protections solaires fixes : dimensionnement au moyen de susdesign

Source : https://susdesign.com/

Protection solaire mobile : Analyse d'une fiche technique

108112 grey-sand A / B Widths: 1600, 1800, 2050, 2500, 2850, 3200 mm



Solar Heat & Light Control Properties

	Ts	Rs	As	Τv	TVdiff	TVdir	Tuv	TVdif-h	Glare control
Α	4.4	21.6	74	4.2	1	3.2	3.6	3.3	Class 3
В	4.4	27.2	68.4	4.2	1	3.2	3.6	3.3	Class 3

gtot

							D	
	ext.	int.	ext.	int.	ext.	int.	ext.	int.
A Values	0.2	0.59	0.15	0.59	0.09	0.5	0.08	0.29
A Classes	2	0	2	0	4	1	4	2
B Values	0.18	0.56	0.14	0.56	0.09	0.48	0.08	0.28
B Classes	2	0	3	0	4	1	4	2

Solar Heat & Light Control Properties

					TVdiff	TVdir		TVdif-h	Glare control
Α	3.7	12.7	83.6	3.7	0.4	3.2	3.6	2.7	Class 3
В	3.7	9.6	86.7	3.7	0.4	3.2	3.6	2.7	Class 3

gtot

							D	
	ext.	int.	ext.	int.	ext.	int.	ext.	int.
A Values	0.21	0.64	0.16	0.63	0.1	0.53	0.09	0.3
A Classes	2	0	2	0	3	0	4	2
B Values	0.22	0.66	0.17	0.65	0.1	0.54	0.09	0.3
B Classes	2	0	2	0	3	0	4	2

Glazing A Clear Single Glazing

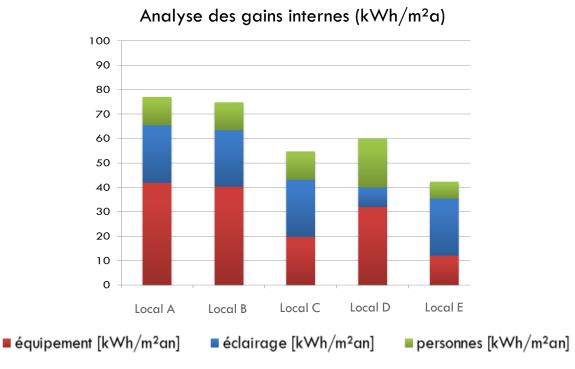
Glazing B Clear Double Glazing

Glazing C Double Glazing with Low E Coating

Glazing D Solar Control Double Glazing Low E

Source: Helioscreen

BILAN THERMIQUE APPORTS SOLAIRES


APPORTS INTERNES

- Introduction
- Eclairage
- ► Equipements
- Occupation

INTRODUCTION

Les apports internes vont dépendre

- des équipements
- de l'éclairage
- des personnes

BILAN THERMIQUE APPORTS SOLAIRES


APPORTS INTERNES

- ► Introduction
- Eclairage
- Equipements
- Occupation

ECLAIRAGE

Puissance <> énergie

- L'entièreté de l'énergie électrique consommée par l'éclairage artificiel est dissipée sous forme de chaleur dans l'ambiance intérieure, par rayonnement, convection ou conduction
- Seule une fraction de cette quantité d'énergie est transformée en lumière

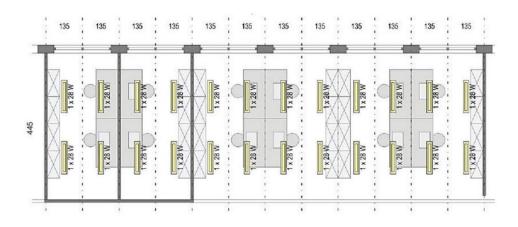
Source : énergie+

ECLAIRAGE

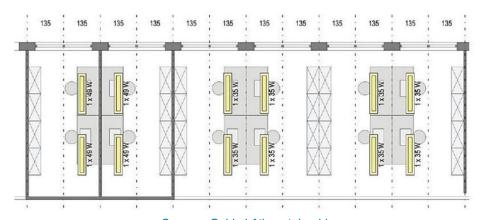
Puissance <> énergie

- ► Exemple d'un bureau paysager
 - Surface : ± 12 m²/pers
 - Puissance installée éclairage: 10 W/m²
 - ⇒ Puissance par poste de 120 W
 - Si l'éclairage est allumé 8h/j 5j/7 (210j/an)
 - ⇔ Consommation annuelle <u>par poste</u> de 25,2 kWh/m².an = apports
- Quels sont les deux leviers pour réduire les apports ?

ECLAIRAGE > SOLUTIONS


Limiter la puissance installée

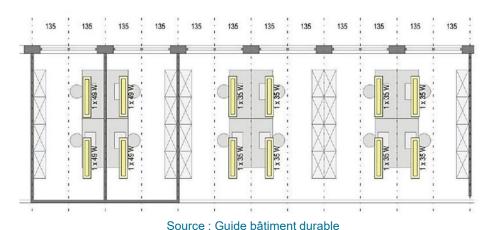
- Réduire le niveau d'éclairement
 - 500 lux OU 300 lux + appoint local ??


ECLAIRAGE > SOLUTIONS

Limiter la puissance installée

► Circonscrire la zone à éclairer

24 x 1x28 W → 9,3 W/m²


4x 1x49 W 8x 1x35 W → 6,6 W/m²

ECLAIRAGE > SOLUTIONS

Réduire le temps de fonctionnement

- Régulation
 - Horaire
 - · Sondes de luminosité

4x 1x49 W 8x 1x35 W → 6,6 W/m²

BILAN THERMIQUE APPORTS SOLAIRES

APPORTS INTERNES

- ► Introduction
- Eclairage
- Equipements
- Occupation

EQUIPEMENTS

BILAN

Quels équipements ?

- Résidentiel
 - Électro-ménagers
 - ...
- Tertiaire / Industriel
 - Bureautique
 - Machines, outils
 - ...
- Communs (à toutes les affectations)
 - Auxiliaires (circulateur, ventilateur...)
 - Onduleur (installation photovoltaïque)
 - •

EQUIPEMENTS

Quelques ordres de grandeur

Puissances

• Ordinateur portable : 20 à 30 W

• Écran : 10 W

Corps humain: +/- 80 W

- Quels sont les paramètres importants à considérer ?
 - Puissance
 - Temps de fonctionnement et la période d'utilisation

EQUIPEMENTS

Quelques ordres de grandeur

Quelle est la puissance émise par un onduleur de 3,5kVA (installation d'environ 5000Wc) lorsque les panneaux sont en production maximale?

	SE2000H ⁽¹⁾	SE2200H	SE3000H	SE3500H	SE3680H	SE4000H	SE5000H	SE6000H	
APPLICABLE AUX ONDULEURS AVEC LES CODES ARTICLES	SEXXXXH-XXXXXBXX4								
SORTIE									
Puissance nominale de sortie AC	2 000	2 200	3 000	3 500	3 680	4 000	5 000(2)	6 000	VA
Puissance maximale de sortie AC	2 000	2 200	3 000	3 500	3 680	4 000	5 000(2)	6 000	VA
Tension de sortie AC (nominale)	230								V _{CA}
Plage de tension de sortie AC	184 à 264,5								V _{CA}
Fréquence AC (nominale)	50/60 ± 5								Hz
Intensité de sortie continue maximale	9,5	10	14	16	16	18.5	23	27,5	Α
Taux de distorsion harmonique (THD)	<3								%
Facteur de puissance	1, adaptable de -0.9 à 0.9								
Contrôle de la production d'électricité, protection d'îlotage, seuils nationaux configurables	Oui								
ENTREE	l								
Puissance DC maximale, système non-StorEdge	4 000	4 400	6 000	7 000	7 360	8 000	10 000(3)	12 000	W
Puissance DC additionnelle pour les systèmes couplés DC avec StorEdge	170 % de surdimensionnement DC/AC + l'équivalent en kWc d'une puissance continue de batterie, et pas plus de 5 kWc								
Sans transformateur, sans mise à la terre	Oui								
Tension d'entrée maximale	480								V _{cc}
Tension d'entrée DC nominale	380								V _{cc}
Courant d'entrée max.	6	6,5	9	10	10,5	11,5	13,5	16,5	A _{cc}
Protection contre la polarité inversée	Oui								
Détection de l'isolation du défaut à la terre	Sensibilité de 600 kΩ								
Rendement max. de l'onduleur	99,2								%
Rendement européen pondéré	98,3 98,8 99						9	%	
Consommation électrique nocturne	< 2.5								W

EQUIPEMENTS > SOLUTIONS

Avoir une réflexion sur l'emplacement des équipements techniques

- Dans ou hors du volume protégé ?
 - ⇒ Le concepteur n'a de prise que sur les auxiliaires

EQUIPEMENTS > SOLUTIONS

Sensibiliser à la sélection de matériel performant / peu consommateur en énergie

- ⇒ Le choix d'équipements performants / peu consommateurs est plutôt du ressort de l'utilisateur
- ⇒ Le concepteur a peu de prises sur cet enjeu

BILAN THERMIQUE APPORTS SOLAIRES

APPORTS INTERNES

- ► Introduction
- Eclairage
- ► Equipements
- Occupation

OCCUPATION

Comment l'occupation peut-elle occasionner des surchauffes ?

Activités « consommatrices » d'énergie

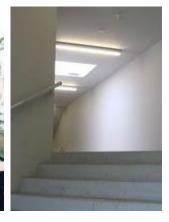
APPORTS INTERNES

Occupation dense (bcp d'occupants au m²)

OCCUPATION > SOLUTIONS

Discuter des scénarii d'utilisation avec la maîtrise d'ouvrage

- Avoir une bonne idée de l'usage futur et se projeter
 - Dans le cas où une simulation dynamique est réalisée, le choix des hypothèses est essentiel
 - ⇒ Voir présentation « Concevoir à l'aide d'une simulation dynamique »


OCCUPATION > SOLUTIONS

Discuter des scénarii d'utilisation avec la maîtrise d'ouvrage

- Circonscrire les usages
 - Le confort doit-il être atteint en tout lieu et à tout moment ?

- Deux types d'apports sont pris en compte dans le bilan énergétique de l'enveloppe : les apports internes et les apports solaires. Leur contribution est favorable en hiver et peut être défavorable en été
- Il existe de nombreux dispositifs permettant de limiter les apports solaires, chacun présentant des avantages et inconvénients
- Les apports internes doivent être pris en compte dans les réflexions autour de la conception d'un projet

Guide bâtiment durable

www.guidebatimentdurable.brussels

Dossier I Limiter les charges thermiques

Sites internet

- https://susdesign.com/
- https://sourceforge.net/projects/carnaval/

Ouvrages

▶ Benhalilou Karima, Abdou Saliha, 2010, Evaluation des transferts thermiques à travers la paroi végétalisée, Congrès International sur les Energies Renouvelables et l'Environnement, Sousse (Tunisie)

Formations et séminaires

- Inscrivez-vous aux formations organisées par Bruxelles Environnement https://environnement.brussels/formationsbatidurable Et notamment, en lien avec cet exposé :
 - Eclairage : conception et régulation

Consultez tous les supports gratuitement!

Muriel BRANDT

Administratrice-déléguée écorce sa

+ 32 4 226 91 60

info@ecorce.be

MERCI POUR VOTRE ATTENTION