FORMATION BÂTIMENT DURABLE

GESTION DE L'ÉNERGIE : RESPONSABLE ÉNERGIE

PRINTEMPS 2024

Financement et rentabilité

Jonathan Fronhoffs

 Donner quelques notions d'analyse financière de rentabilité d'un investissement

THÉORIE : COMMENT CALCULER LA RENTABILITÉ D'UN INVESTISSEMENT

- Introduction
- Concepts de base
- Critères de rentabilité

EXEMPLES : COMMENT CALCULER LA RENTABILITÉ D'UN INVESTISSEMENT

INTRODUCTION

- Dans la vie courante, dans les entreprises, il faut prendre sans cesse des décisions.
- Souvent ces décisions demandent aussi des investissements.
- Il faut comparer soigneusement les résultats de chaque alternative afin de faire un bon choix

Capitalisation

$$F = VA(1+i)^n$$

Où:

F = Valeur capitalisée (Future)

VA = Valeur actuelle du gain futur

i = Taux d'actualisation

n = Durée de vie économique

- Exemple : Placement de 100 € pendant 5 ans à un taux d'actualisation de 5%. Combien obtenez-vous ?
- ► $T = 100*(1+0.05)5 = 100*1.2763 = 127.63 \in$

Actualisation

$$VA = \frac{VF}{(1 + Ta)^n}$$

Où:

VA = Valeur actualisée

VF = Valeur future d'un gain

Ta = Taux d'actualisation

n = Durée

- ► Exemple : Combien d'argent faut-il placer sur un compte, si les intérêts s'élevent à 5% pour obtenir 100 € dans 5 ans ?
- ► $VA = 100/(1+0.05)5 = 100/1.2763 = 78.35 \in$

Durée de vie d'un projet

- Durée de vie technique
 - Période au terme de laquelle un équipement ne pourra plus remplir sa fonction (réparations trop nombreuses et trop coûteuses, réparation pas possible, ...)
- Durée de vie économique
 - Période au terme de laquelle il ne sera plus rentable de continuer le projet, vu les performances techniques concurrentes
- Les calculs de rentabilité se font selon la durée de vie économique
 - Cogénération : certificats verts garantis pour 10 ans → durée de vie économique = 10 ans

Augmentation du coût de l'énergie

Arrêté ministériel déterminant les hypothèses énergétiques à prendre en considération lors des études de faisabilité technico-économique :

<u>Energie</u>	Evolution annuelle du prix de l'électricité hors inflation	5,87 %/an
	Evolution annuelle du prix du gaz hors inflation	5,87 %/an
	Evolution annuelle du prix du mazout hors inflation	3,26 %/an
<u>Economie</u>	Intervalle possible du taux d'actualisation hors inflation	4,5-6,5 %/an
	Inflation	2,00 %/an

- ► Temps de retour simple TRS
- Valeur actualisée nette VAN
- Taux de Rentabilité Interne TRI
- ▶ Temps de retour élaboré TRE
- Coût Actualisé de l'Energie CAE/LCOE

EXEMPLE D'INVESTISSEMENT

Temps de retour simple			
Investissement	45	kWc	
Orientation	S		
Production spécifique	950	kWh/kWc	
Production annuelle	42.750	kWh/an	
Coût de l'électricité	0,11	€/kWh	
Prix injection	0,03	€/kWh	
Taux d'autoconsommation	35	%	

	Coûts	
Investissement	1.850	€/kWc
	83.250	€
Entretien	2	€/module
	250	Forfait
	520	€/an
Onduleur	2.000	€/12 ans

Bénéfices			
Electricité autoconsommée	1.646	€/an	
Electricité réinjectée	834	€/an	
Nombre de Certificats Verts	90	CV/an	
Facteur multiplicateur	2		
Valeur CV	90	€	
Revenus CV @90€/CV	8.080	€/an	
Revenus Annuels	10.559	€/an	

Temps de retour simple

►TRS = temps nécessaire pour récupérer le montant investi

$$TRS = \frac{I}{Ga}$$

- ►Où:
 - I = Investissement initial du projet
 - G_a = Gain annuel net du projet
- Le projet est rentable si le TRS est inférieur à sa durée de vie économique

BASE DE CALCUL DE LA RENTABILITÉ D'UN INVESTISSEMENT

TRI

	TRI	
Investissement	83.250	€
Bénéfices annuels	10.559	€/an
TRI		7,9 ans

Temps de retour simple

- **+**
 - · Calcul simple, rapide
- .
 - Ne tient pas compte de l'évolution de la valeur monétaire ni de la durée de vie du projet.
 - Ne tient pas compte des cash-flows après la période de temps de retour
 - Ne tient pas compte de la grandeur de l'investissement.
- Critère trop simpliste ne tenant pas compte des gains générés après la période de temps de retour
 - Ce critère seul peut donc entrainer des mauvais choix

Valeur actualisée nette

 VAN = cash-flow actualisés = différence entre les revenus annuels actualisés et les dépenses annuelles actualisées sur la durée de vie du projet (investissement initial compris)

$$VAN = \sum_{a=0}^{n} \frac{Ca}{(1+Ta)^{a}} = \sum_{a=0}^{n} \frac{Ga}{(1+Ta)^{a}} - \sum_{a=0}^{n} \frac{Fa}{(1+Ta)^{a}}$$

Où:

G = gains
F = frais
C = cash flow
Ta = Taux d'actualisation
a = année
n = durée de vie

- ► Le projet est rentable si la VAN > 0
- Les gains et les dépenses sont actualisés à l'année initiale de l'investissement

BASE DE CALCUL DE LA RENTABILITÉ D'UN INVESTISSEMENT

VAN

Année	F	lux financiers		VAN
0	€	-42.750	€	-
1	€	10.039	€	-32.908
2	€	10.386	€	-22.925
3	€	10.750	€	-12.795
4	€	11.135	€	-2.508
5	€	11.540	€	7.944
6	€	11.968	€	18.571
7	€	12.420	€	29.383
8	€	12.898	€	40.391
9	€	13.403	€	51.606
10	€	13.938	€	63.040

EXEMPLE

CRITÈRES DE RENTABILITÉ

Valeur actualisée nette

- **+**
 - Tient compte de la valeur temporelle de l'argent
 - Les revenus couvrant la durée de vie entière du projet entrent en ligne de compte
- **-**
 - · Calcul compliqué, peu intuitif
 - On suppose que l'on peut prêter et emprunter au même taux d'intérêt

Taux de rentabilité interne

►TRI = <u>taux d'actualisation</u> qui annule la VAN

$$VAN = \sum_{j=0}^{n} \frac{Cj}{(1+i)^{j}} = \sum_{j=0}^{n} \frac{Oj}{(1+i)^{j}} - \sum_{j=0}^{n} \frac{Kj}{(1+i)^{j}} = 0$$

►Où:

• G = Gain

• F = Frais

C = Cash Flow

i = Rendement interne de l'investissement

• a = Année

• n = Durée de vie

- ► Le projet est rentable si TRI > taux d'actualisation (prêt)
- Exprime le coût du capital nécessaire à l'investissement

BASE DE CALCUL DE LA RENTABILITÉ D'UN INVESTISSEMENT

TRI

Durée (année)	TRI
10	7%
8	5%
6	4%
4	3%
3	2%

THÉORIE

Taux de rentabilité interne

- **+**
 - Tient compte de la valeur temporelle de l'argent
 - Les revenus couvrant la durée de vie entière du projet entrent en ligne de compte
- **-**
 - Calcul compliqué, peu intuitif
 - On suppose que les cash-flows positifs peuvent être investis au TRI

Temps de retour élaboré

► TRE = durée qui annule la VAN

$$VAN = \sum_{a=0}^{n} \frac{Ca}{(1+Ta)^{a}} = \sum_{a=0}^{n} \frac{Ga}{(1+Ta)^{a}} - \sum_{a=0}^{n} \frac{Fa}{(1+Ta)^{a}} = 0$$

Où:

G = revenus

F = frais

C = cash flow

Ta = Taux d'actualisation

a = année

1 = **TRE**

► Le projet est rentable si TRE < Durée de vie du projet

Temps de retour élaboré

- **+**
 - Tient compte de la valeur temporelle de l'argent
 - Les revenus couvrant la durée de vie entière du projet entrent en ligne de compte
- **-**
 - Calcul compliqué, peu intuitif, itératif
 - On suppose que l'on peut prêter et emprunter au même taux d'intéret

Coût Actualisé de l'énergie

CAE / LCOE

$$CAE = \frac{VAN Coûts totaux sur la durée du projet}{VAN de l'énergie produite sur la durée du projet}$$

- La valeur actualisée de l'énergie produite sur la durée totale du projet est mise en rapport avec tous les coûts liées à l'investissement .
- La mesure est rentable si le CAE est inférieur au prix unitaire de l'énergie (EUR/kWh).

BASE DE CALCUL DE LA RENTABILITÉ D'UN INVESTISSEMENT

LCOE

Investissement initial	83.250
Entretien	520
CV	8080
Actualisation	2%
Valeur Actuelle Investissement	83.250
VAN Total Coûts	€ 11.948,85
Production d'énergie annuelle	14,963
Production d'énergie actualisée	229.989 kWh
LCOE	0,05 €/kWh

Coût du combustible économisé

- **+**
 - Calcul simple
 - Tient compte de la valeur temporelle de l'argent
 - Tient compte de la durée de vie entière de la mesure
- -
 - Ne tient pas compte de la grandeur de l'investissement

Un investissement est rentable

► Temps de retour simple (TRS)

→ TRS < Durée de vie économique

Valeur actualisée nette (VAN)

 \Rightarrow VAN > 0

► Taux de Rentabilité Interne (TRI)

TRI > Taux d'actualisation

▶ Temps de retour élaboré (TRE)

→ TRE < Durée de vie économique

► Coût actualisé de l'énergie (CAE/LCOE) → CAE < Coût unitaire de l'énergie

THÉORIE : COMMENT CALCULER LA RENTABILITÉ D'UN INVESTISSEMENT

EXEMPLES : COMMENT CALCULER LA RENTABILITÉ D'UN INVESTISSEMENT

CE QU'IL FAUT RETENIR DE L'EXPOSÉ

- Il existe différents critères d'analyse financière d'investissements
- Les critères simples peuvent conduire à des mauvais choix
- Les critères plus complets sont plus difficiles à maîtriser ... mais sont essentiels pour réaliser de bons choix

Guide bâtiment durable

► ER03 : LA RENTABILITE DES ENERGIES RENOUVELABLES

Outil excel

- Fonction NPV (rate;value1;[value2];...) (VAN en français)
- Fonction IRR (values;[guess]) (TRI en français)

Jonathan Fronhoffs

P-Woks.org

MERCI POUR VOTRE ATTENTION