FORMATION BÂTIMENT DURABLE

ENERGIE:

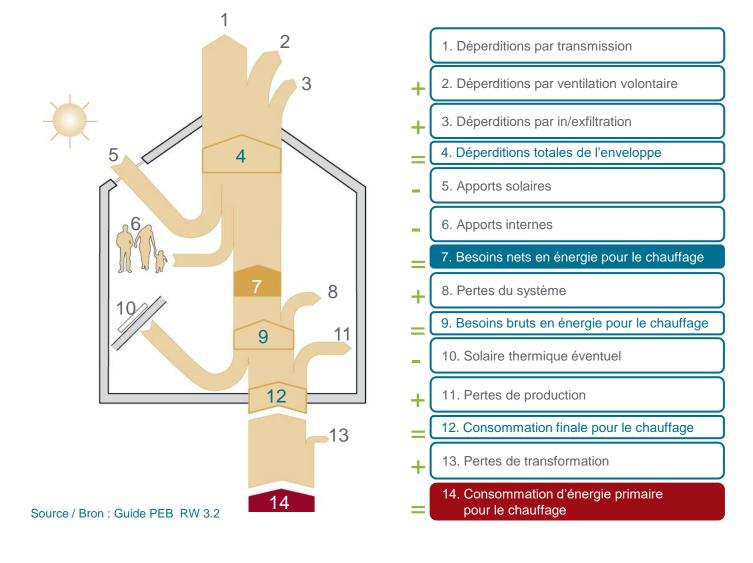
PRINCIPES FONDAMENTAUX

PRINTEMPS 2022

Comment chauffer?

Production, distribution, émission et régulation

- Identifier les besoins en chauffage d'un bâtiment
- Découvrir les composants d'une installation de chauffage
- Obtenir une vue d'ensemble des systèmes de production de chauffage
- Obtenir une vue d'ensemble des systèmes d'émission de chaleur
- Comprendre l'importance de la régulation


INTRODUCTION

- Besoins en chauffage
- ► Comment chauffer ?
- Composants d'une installation de chauffage

PRODUCTION DE CHALEUR DISTRIBUTION EMISSION RÉGULATION

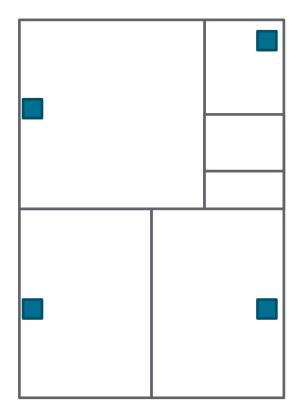
BESOINS EN ÉNERGIE POUR LE CHAUFFAGE

4

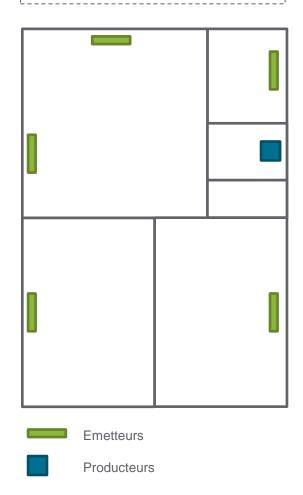
INTRODUCTION

- ► Besoins en chauffage
- Comment chauffer ?
- Composants d'une installation de chauffage

PRODUCTION DE CHALEUR DISTRIBUTION


EMISSION

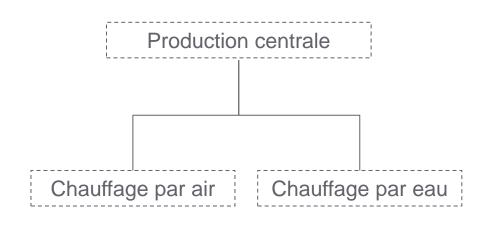
RÉGULATION



Mode de production

Production locale

Production centrale



COMMENT CHAUFFER?

Production locale

- Poêle à bois, au gaz, au mazout,
- Radiateurs électriques
- ...

7

Source : Radson

COMMENT CHAUFFER?

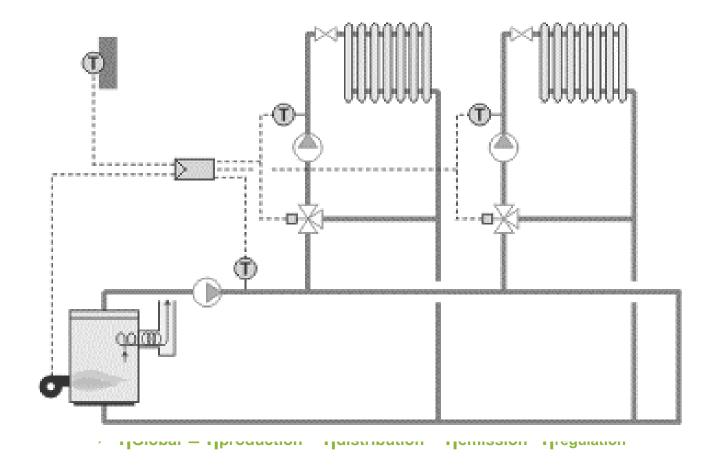
8

Chauffage par l'air

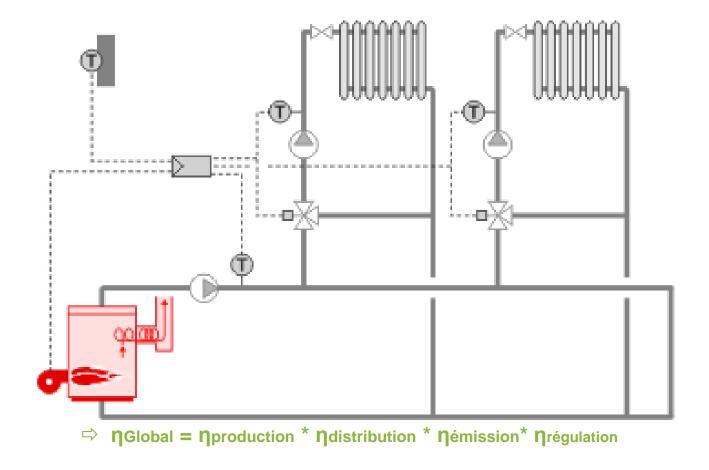
- ► Cp,air = 1000 kJ/kgK
 - Encombrement des conduites important
 - Risque de courants d'air
- ► Inertie thermique faible
 - Réchauffement rapide
 - Refroidissement rapide
- Présence de ventilateurs
 - Consommation d'énergie plus élevée
 - Risque de nuisances sonores
- Air
 - Entretien des conduites d'air,
 - Couplage éventuellement possible avec la ventilation,
 - Température de pulsion de 35°C max pour maintenir le confort

Chauffage par l'eau

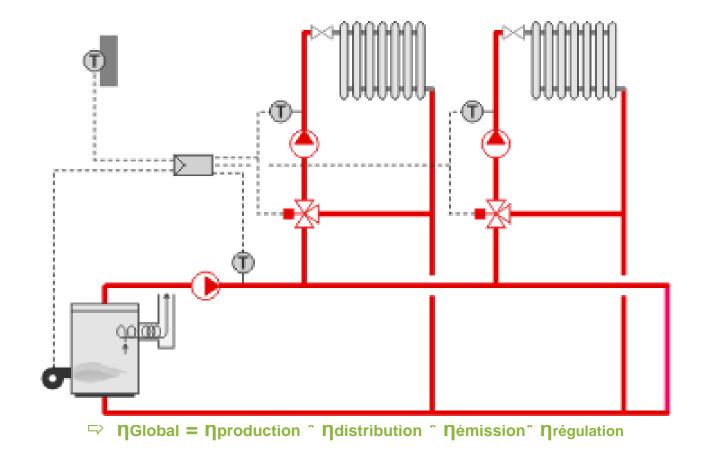
- Cp,eau = 4186 kJ/kgK
 - Encombrement des conduites plus faible
 - Intégration des conduites aisée
- ► Inertie thermique plus élevée
 - Réchauffement lent
 - Refroidissement lent
- Présence de circulateurs
 - Consommation d'énergie

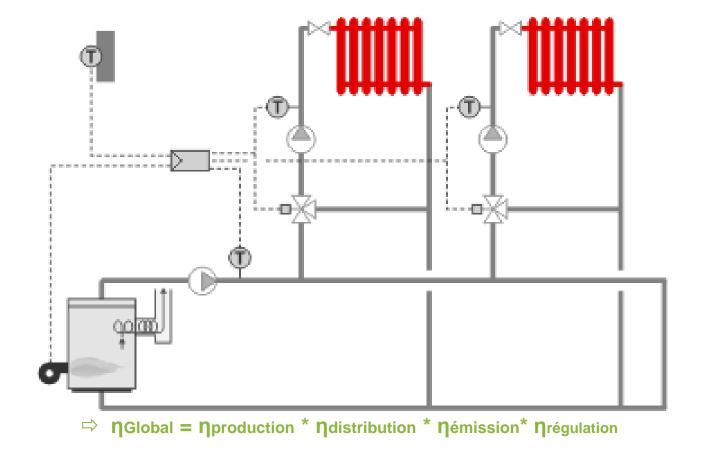


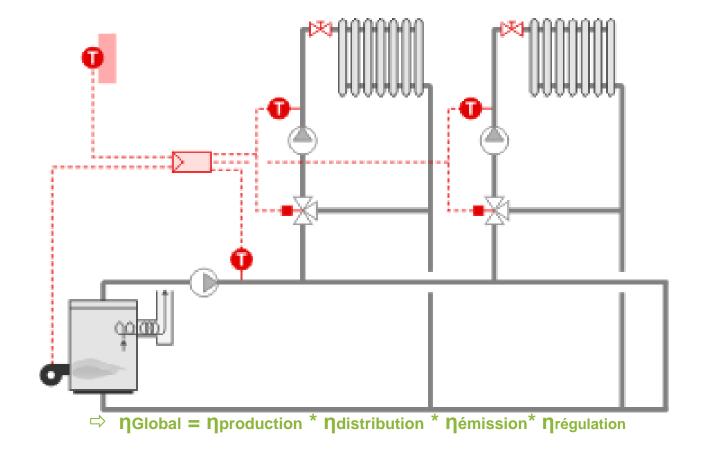
INTRODUCTION


- ► Besoins en chauffage
- ▶ Comment chauffer ?
- Composants d'une installation de chauffage

PRODUCTION DE CHALEUR DISTRIBUTION EMISSION RÉGULATION





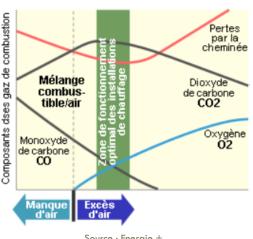


INTRODUCTION

PRODUCTION DE CHALEUR

- Combustion
- ▶ Producteur à combustion
- ► Pompe à chaleur

DISTRIBUTION EMISSION RÉGULATION



Combustion et combustible

Réaction de la combustion :

- Hydrocarbures < gaz, fuel, bois, charbon, ...</p>
- ► Air : N2, O2, CO2, ...
 - L'azote contenu dans l'air forme des NOx dans certaines conditions

	Production de CO2 Production de H2O	
1 m³ de gaz	~ 2 kg / m³	~ 1,7 kg/m³
1 I de mazout	~ 3 kg / l	~ 0,9 kg/l

Source : Energie +

PRODUCTION À COMBUSTION

Pouvoir calorifique

17

- C'est la chaleur que peut dégager la combustion complète d'une unité de combustible
 - Pouvoir calorifique inférieur (PCI) : mesuré en conservant l'eau à l'état vapeur
 - Pouvoir calorifique supérieur (PCS) : mesuré en récupérant la chaleur de condensation de l'eau > nécessite une chaudière à condensation !

⇒ PCS = PCI + chaleur latente

	PCI	PCS	
Gaz naturel	~ 10 kWh/m³	~ 11,11 kWh/m³	+ 11,11 %
Mazout	~ 10 kWh/l	~ 10,64 kwh/l	+ 6,4 %
Propane	~ 6,6 kWh/l	~ 7,2 kWh/l	+9%
Charbon	~ 8,7 kWh/kg	~ 9 kWh/kg	+ 3,5 %
Bois	~ 2,5 à 4 kwh/kg	~ 2,7 à 4,3 kwh/kg	+ 7,5 %
Pellets	~ 5 kWh/kg	~ 5,5 kWh/kg	+ 10 %

INTRODUCTION

PRODUCTION DE CHALEUR

- ▶ Combustion
- Producteur à combustion
- ► Pompe à chaleur

DISTRIBUTION EMISSION RÉGULATION

PRODUCTEUR A COMBUSTION

Performance d'une chaudière

19

- Caractérisée par différents rendements
 - · Rendement nominal ou utile
 - Rendement de combustion
 - Rendement saisonnier

PRODUCTEUR A COMBUSTION

Rendement utile

C'est le rendement instantané lorsque le brûleur fonctionne

$$\Rightarrow$$
 $\eta_{\text{utile}} = P_{\text{u}} / P_{\text{a}}$

Avec,

- Pa est la puissance contenue dans le combustible
 Pa = Débit combustible x pouvoir calorifique PCI (ou PCS)
- Pu est la puissance utile, la puissance fournie à l'eau de chauffage
 Pu = (Pa Pertes fumées Pertes ambiance) / Pa
- Le rendement instantané varie en fonction de la température de l'eau et de la puissance du brûleur par rapport à la puissance de la chaudière
 - ⇒ Le fabricant fournit un rendement nominal dans des conditions de combustion idéales à un régime d'eau

- Plage de puissance

à 80/60: 489kW à 40/30: 530kW

Rendement

Pleine charge PCI 80/60: 97,4% Charge partielle PCI retour 30°C: 109,5%

PRODUCTEUR A COMBUSTION

Rendement de combustion

▶ C'est l'image de la transformation complète du combustible en chaleur et de la transmission de celle-ci à l'eau de la chaudière.

$$\Rightarrow$$
 $\eta_{comb} = (P_a - Pertes fumées) / $P_a$$

Avec,

21

• Pa est la puissance contenue dans le combustible

Pa = Débit combustible x pouvoir calorifique PCI

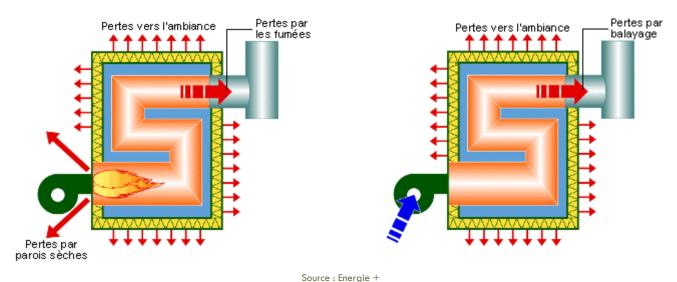
Rendement souvent supérieur à 100% pour les chaudières à condensation

Le rendement instantané de combustion d'une chaudière peut être calculé selon

$$\Rightarrow$$
 $\eta_{comb} = 100 - f x (T_{fumées} - T_{amb}) / %CO2$

Avec,

- Tfumées = la température des fumées à la sortie de la chaudière [°C] > mesurable
- Tamb = température ambiante de la chaufferie [°C] > mesurable
- %CO2 = la teneur en CO2 des fumées [%] > mesurable
- f = facteur dépendant principalement du type de combustible



PRODUCTEUR A COMBUSTION

Rendement saisonnier

22

- ▶ C'est le rapport entre l'énergie totale transmise à l'eau de chauffage pendant toute la saison de chauffe et l'énergie contenue dans le combustible.
- ► Il permet de chiffrer les <u>performances globales</u>
- Il tient compte des pertes à l'arrêt :
 - Pertes par rayonnement et convection
 - Pertes par balayage (convection interne dans la cheminée)

Quand le brûleur fonctionne

Quand le brûleur est à l'arrêt

Aperçu des technologies existantes

- Types de chaudières
 - Chaudière sol murale
 - Brûleur atmosphérique à air pulsé
 - Haute température basse température à condensation
 - Chaudière étanche non-étanche
 - Brûleur on/off deux allures modulant
- Combustibles : gaz naturel (ou propane) mazout bois
- ► Large gamme de puissances disponibles
- ► Petites puissances de 1 kW à des très grande puissance (> 12MW)

PRODUCTEUR A COMBUSTION

Chaudière Sol

24

- Demande plus d'espace dans son installation
- Pour des maisons individuelles mais aussi de gros immeubles
- Possibilité d'avoir des chaudières à grande contenance en eau
- Large gamme de puissance 15kW
 à 12MW

Chaudière Murale

- Moins encombrante Faible poids et dimensions réduites
- Bien adaptée aux appartements et maisons individuelles
- Principalement des chaudières à condensation au gaz
- Puissance de 10 à 100 kW, également la possibilité de mise en cascade pour de plus grandes puissances

FORMATION BÂTIMENT DURABLE : ENERGIE : PRINCIPES FONDAMENTAUX - PRINTEMPS 2022

PRODUCTEUR A COMBUSTION

Chaudière Atmosphérique

- Rampe de brûleur placée sous le foyer,
- Absence de ventilateur,

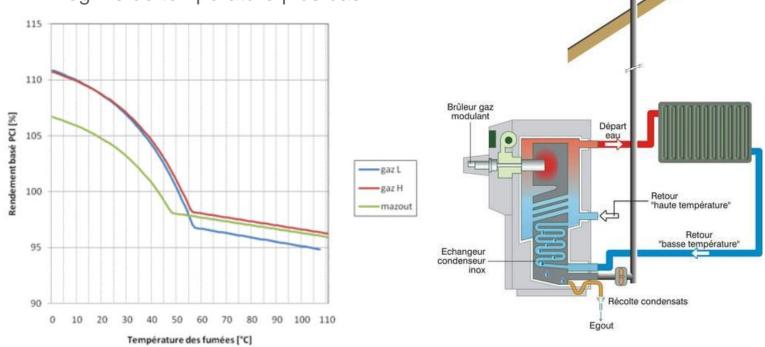
25

- Emissions importantes de NOx
- Pertes à l'arrêt importantes
- ► Très peu performant, rendement faible (entre 85% et 92%)
- ► En voie de disparition !

Chaudière à brûleur pulsé

- Brûleur choisi indépendamment de la chaudière (mazout ou gaz)
- Brûleur équipé d'un ventilateur
- Pertes à l'arrêt assez faible
- Rendement dépend du réglage
- Rendement utile ~ 84 .. 90 %
 (voir plus pour les chaudières à condensation!)

PRODUCTION À COMBUSTION


Chaudière à condensation

26

 Condensation de la vapeur d'eau présente dans les fumées grâce à un échangeur

► Rendement ~ 95 .. 108 % (sur PCI)

Régime de température plus bas

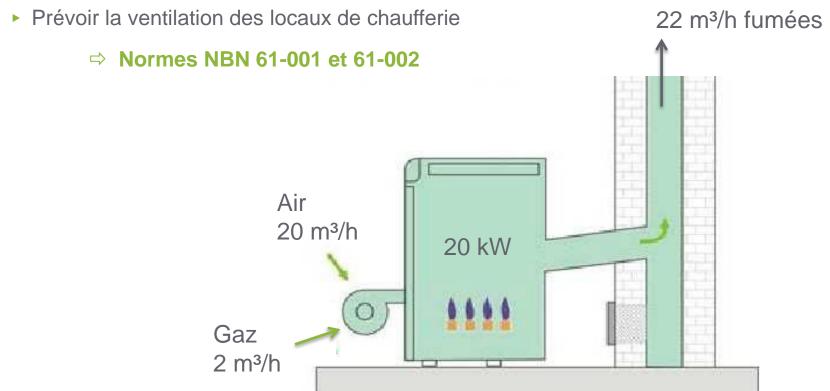
Source/Bron : energie+

⇒ Il est possible d'utiliser un condenseur séparé, rajouté à une chaudière traditionnelle, pour augmenter son rendement.

PRODUCTION À COMBUSTION

Chaudière à condensation

Source/Bron: Vaillant

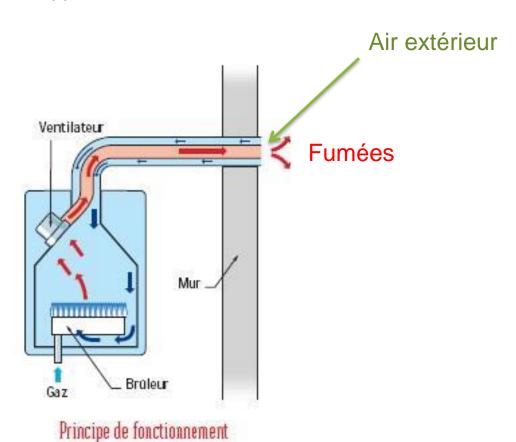


PRODUCTEUR A COMBUSTION

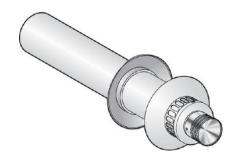
Chaudière non étanche

28

- Une chaudière est dite « non-étanche » lorsqu'elle prélève l'air dans le local de chaufferie
- Classification de la chaudière: type B


type B

PRODUCTEUR A COMBUSTION

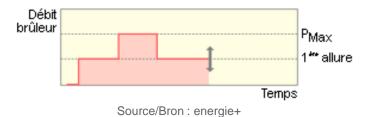

Chaudière étanche

29

▶ Une chaudière est dite « étanche » lorsque son fonctionnement est indépendant de l'air du local où elle est installée. Ce principe est également appelé « ventouse ».

Conduit concentrique pour chaudière étanche

PRODUCTEUR A COMBUSTION


Brûleur on/off

30

« Tout ou rien »

Bruleur deux allures

► Enclenché en première allure, passe en seconde allure si nécessaire

Brûleur deux allures progressives

- Présente deux niveaux de puissance
- Le passage de la première à la seconde allure est progressif

Brûleur modulant

- ► Toutes les allures de fonctionnement sont possibles
- Module dans une gamme de puissance
 - > donné sur la fiche technique de l'appareil ex: entre 6 et 24 kW

PRODUCTEUR A COMBUSTION

Combustion de biomasse

Combustion de bûche, plaquette/pellet (résidus de production)

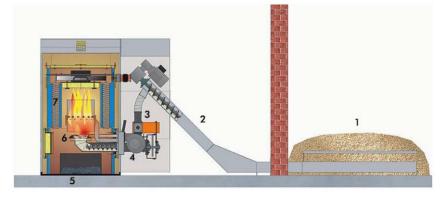


Figure 16: Chaudière automatique à granulés de bois
1: silo de stockage des pellets, 2: vis d'extraction du combustible, 3: système de sécurité incendie, 4: ventilateur pour l'air primaire et secondaire, 5: cendrier, 6: brûleur, 7: chauffage de l'eau par tubes de fumée – système automatique de nettoyage des tubes (Source : Ökofen 2004)

Source : Ökofen

Source : ETA

Spécificités

31

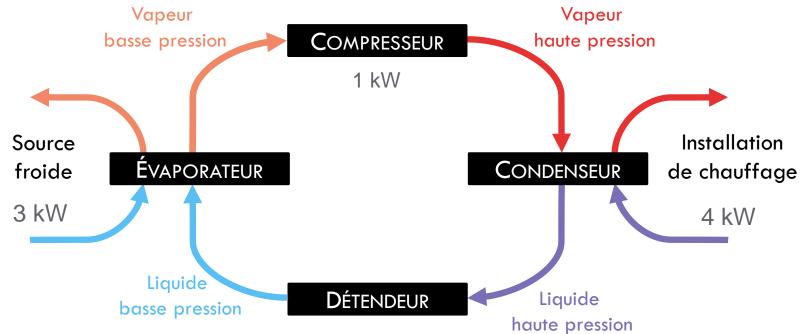
- Cout d'investissement élevé
- ▶ Large gamme de puissance (24 à >> kW)
- Maintenance importante (cendrier, etc.)
- Espace de stockage nécessaire pour combustible
- Inertie très importante

INTRODUCTION

PRODUCTION DE CHALEUR

- ▶ Combustion
- ▶ Producteur à combustion
- ▶ Pompe à chaleur

DISTRIBUTION EMISSION RÉGULATION



POMPE À CHALEUR

33

Principe de fonctionnement

- Soutire de la chaleur d'une « source froide » (sol, air extérieur...)
 > nécessite une consommation d'électricité
- Augmente son niveau de température
- Restitue cette chaleur à une température plus élevée

- Coefficient de performance d'une pompe à chaleur
 - ⇒ COP = Puissance thermique du condenseur / Puissance absorbée

POMPE À CHALEUR

Source froide

34

- ► Le sol (= géothermie de surface)
- L'air (= aérothermie)
- L'eau (= hydrothermie)
- La chaleur perdue (air vicié, process...)

PAC aérothermique

Echangeur statique

Echangeur dynamique

PAC géothermique

Captage horizontal

PAC hydrothermique

Eau de surface

Eau souterraine

Intérêt énergétique

- Efficacité énergétique potentiellement élevée
 Suivant type de source : air / eau / sol (géothermie)
- Éventuellement réversible

Spécificités

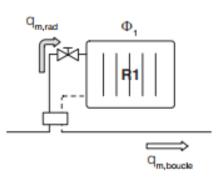
- ► Toute gamme de puissances disponible
- Fonctionnement en basse température
 - ↑ Eau chaude sanitaire → PAC adaptée
 - Type de corps d'émission (voir plus loin)

INTRODUCTION PRODUCTION DE CHALEUR

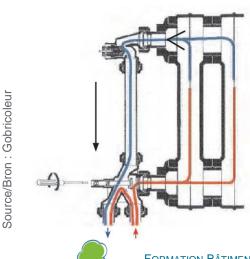
DISTRIBUTION

- Réseau de distribution
- Matériaux
- Autres accessoires

EMISSION RÉGULATION



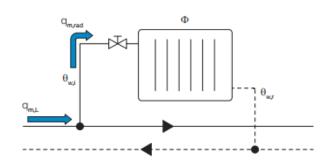
RÉSEAU DE DISTRIBUTION


37

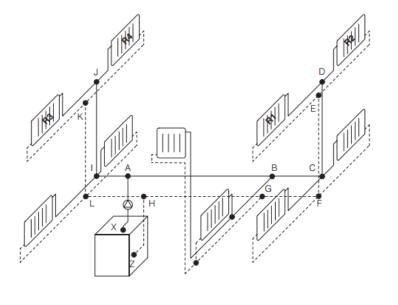
Installation monotube (vieilles installations)

- Plusieurs radiateurs sont raccordés sur une même boucle
- Le départ et le retour sont assurés par une seule et même conduite
- Une partie du débit de la boucle passe dans le radiateur, l'autre partie passe par une dérivation et est mélangée à l'eau de retour
- Des vannes monotubes permettent de régler le rapport entre le débit de la boucle et celui du radiateur
- Forte diminution de la température de l'eau

Source / Bron : CSTC, Rapport 14



Source/Bron: Traiteur Cheval Blanc

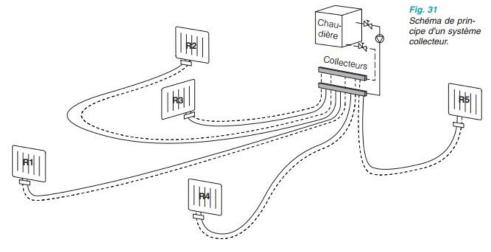


Installation bitube

- Les radiateurs sont montés en parallèle, sur deux tubes:
 - · L'entrée du radiateur est raccordée au tube départ
 - La sortie du radiateur est raccordée sur le tube retour

Source / Bron : CSTC, Rapport 14

RÉSEAU DE DISTRIBUTION


Collecteur

39

- Chaque corps de chauffe est raccordé individuellement
- Conduit synthétique ou multicouche
- Chaque circuit alimente un seul radiateur
- Les collecteurs sont reliés entre eux puis raccordés à la chaudière
- Idéal pour les petites installations
- Facilité de réglage
- Idéal pour les petites installations

Source / Bron: CSTC, Rapport 14

INTRODUCTION PRODUCTION DE CHALEUR

DISTRIBUTION

- Réseau de distribution
- Matériaux
- Accessoires

EMISSION RÉGULATION

MATÉRIAUX

Matériaux synthétique multicouches

- + Coût du matériau
- + Souple et facile à mettre en œuvre
- + Idéal pour encastrer dans une chape ou dans les murs
- + Peu sensible au calcaire
- + Facile à transporter
- Dilatation thermique plus élevée
- Sensible aux UV (à protéger dans des conduits techniques)
- Cintrage
- Ne se soude pas
- Issu de l'industrie pétrochimique
- Limite d'utilisation au niveau des températures (~70°C max)

MATÉRIAUX

Acier galvanisé

- + Mise en œuvre facile
- Dégradation accélérée au-delà de 60°C
- Sujet à la corrosion et à l'entartrage
- Incompatible avec le cuivre en amont

Acier électrozingué

- + Mise en œuvre facile
- + Adapté aux eaux corrosives, résistant à la corrosion
- + Large plage de température possible
- Incompatible avec le cuivre en amont

Source / Bron : Style-indus

Source / Bron : Chauffage Sanitaire Partedis

INTRODUCTION PRODUCTION DE CHALEUR

DISTRIBUTION

- Réseau de distribution
- Matériaux
- Accessoires

EMISSION RÉGULATION

ACCESSOIRES

Circulateur

44

- Permet de faire circuler les débits d'eau corrects dans les circuits
 - A débit constant : marche / arrêt
 - A débit variable : adapte sa vitesse pour fournir le début demandé
 - ⇒ Remarque : Depuis 08/2015, obligation d'installer des circulateurs à haut rendement, indice EEI ≤ 0,23

ACCESSOIRES

Vase d'expansion

- Evite une variation excessive de la pression à l'intérieur de l'installation
- Evite que l'installation soit mise en dépression

Différents types

- Vase d'expansion ouverts (en voie de disparition)
- Vase d'expansion fermés

A pression variable (petites installations)

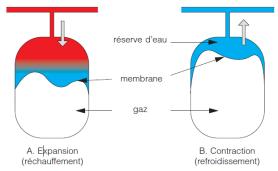


Fig. 65 Principe de fonctionnement du vase d'expansion fermé à pression variable.

A pression constante (grandes installations)

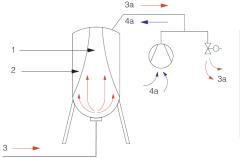


Fig. 75 Principe de fonctionnement du vase d'expansion à compresseur.

- 1. Eau sous pression d'installation
- Air sous pression d'installation
 Réchauffement (expansion) de
- 3a. Libération de la pression via la soupape de surpression
- soupape de surpression
 4. Refroidissement (contraction)
- 4a. Ajout de pression via le com-

Source: CSTC, Rapport 14 Source: CSTC, Rapport 14

ACCESSOIRES

Vase d'expansion

À pression variable

A pression constante

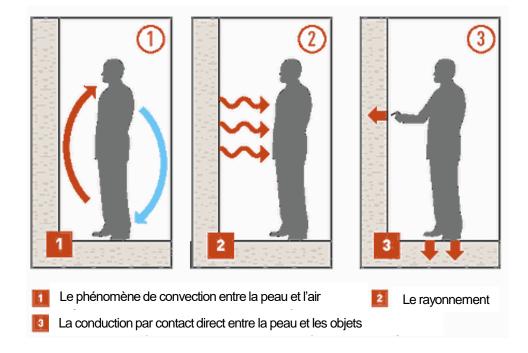
Source: Gitrasun Source: Energie + Source: Energie +

FORMATION BÂTIMENT DURABLE : ENERGIE : PRINCIPES FONDAMENTAUX – PRINTEMPS 2022

INTRODUCTION
PRODUCTION DE CHALEUR
DISTRIBUTION

EMISSION

- Mode d'émission
- ▶ Types d'émetteurs


RÉGULATION

MODE D'ÉMISSION

Principe de l'émission de chaleur

- Convection
- Rayonnement
- Conduction

Source / Bron : SPW Energie

INTRODUCTION
PRODUCTION DE CHALEUR
DISTRIBUTION

EMISSION

- ▶ Mode d'émission
- ► Types d'émetteurs

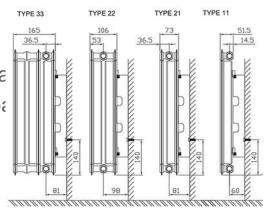
RÉGULATION

TYPE D'EMETTEURS

Radiateur

50

- Échange thermique par convection (et rayonnement)
- Puissance d'émission dépend de :
 - La taille, la forme et le matériau du radiateur
 - La température moyenne de l'eau en circulation
 - Le débit d'eau en circulation
 - La température de l'environnement
 - L'emplacement du radiateur (présence de tablette, de niche ...)
- Régulation aisée (vanne thermostatique)
- Réactivité et dynamique thermique (inertie)


Source / Bron: Radson

TYPE D'EMETTEURS

Radiateur

- Différents types de radiateurs :
 - Le premier chiffre correspond au nombre de pannea
 - Le deuxième chiffre correspond aux nombres d'espa
- Différents régimes de température :
 - 90/70/20
 - 75/65/20 émission normalisée
 - ...

Source / Bron : Chauffage décor

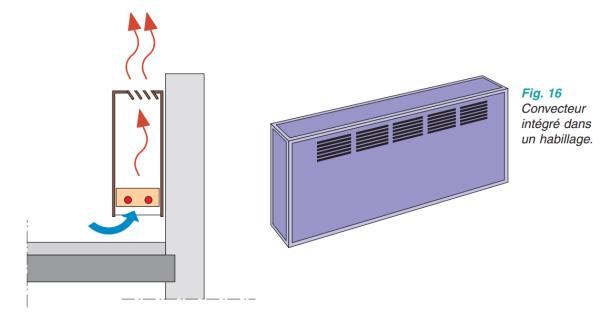
- ⇒ Il existe des tables de correction qui tiennent comptent du régime de température
- L'emplacement du radiateur a également une influence sur son émissivité.
 - ⇒ Il existe des facteurs de correction à appliquer en fonction de l'emplacement du radiateur

52

Exercice

- ▶ Une pièce contient un radiateur dont la puissance est de 1500 W pour un régime de température de 75/65/20. Quelle est sa puissance en régime 60/50/20 ?
 - $P_{60/50/20} = 1500^{\circ}0,63 = 945 \text{ W}$

Tempé- rature de l'eau de départ θ _{w.i} (°C)	Tempé- rature ambiante θ _a (°C)	Température de l'eau de retour $ heta_{w,t}$ (°C)											
		30	35	40	45	50	55	60	65	70	75	80	85
70	24	0,30	0,40	0,48	0,56	0,63	0,70	0,77	0,84				
	22	0,35	0,45	0,53	0,61	0,68	0,75	0,82	0,89				
	20	0,40	0,50	0,58	0,66	0,73	0,80	0,87	0,94				
	18	0,46	0,55	0,63	0,71	0,78	0,85	0,92	0,99				
	16	0,51	0,60	0,68	0,76	0,83	0,90	0,97	1,04				
65	24	0,27	0,36	0,44	0,51	0,58	0,65	0,71					
	22	0,32	0,41	0,49	0,56	0,63	0,70	0,76					
	20	0,37	0,46	0,54	0,61	0,68	0,75	0,81					
	18	0,42	0,51	0,58	0,66	0,73	0,80	0,86					
	16	0,47	0,55	0,63	0,71	0,78	0,85	0,91					
60	24	0,24	0,33	0,40	0,47	0,53	0,60						
	22	0,29	0,37	0,45	0,51	0,58	0,64						
	20	0,34	0,42	0,49	0,56	0,63	0,69						
	18	0,39	0,46	0,54	0,61	0,67	0,74						
	16	0,43	0,51	0,59	0,65	0,72	0,79						
55	24	0,21	0,29	0,36	0,42	0,48							
	22	0,26	0,33	0,40	0,47	0,53							
	20	0,30	0,38	0,45	0,51	0,57							
	18	0,35	0,42	0,49	0,56	0,62							
	16	0,40	0,47	0,54	0,60	0,67							


Source / Bron : CSTC, Rapport 14

TYPE D'EMETTEURS

Convecteur

- ▶ Diffusion de la chaleur par convection (95%) + rayonnement (5%)
- Haute réactivité
- Régulation relativement simple
- Existe aussi en chaud & froid!
 - 2 tubes
 - 4 tubes

Source / Bron : CSTC, Rapport 14

TYPE D'EMETTEURS

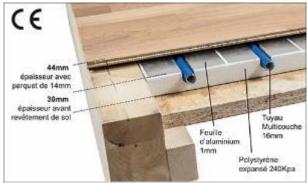
Ventilo-convecteur

54

- Equipés de ventilateur qui forcent la circulation de l'air
 - Permet de réduire le taille ou la température de fonctionnement !
- Meilleure émission calorifique
- Consommation électrique supplémentaire

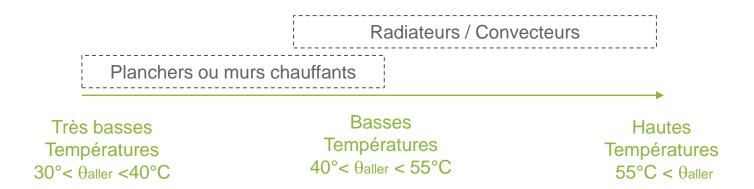
Chauffage par rayonnement

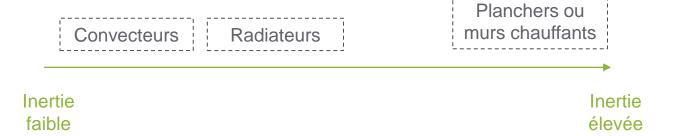
- ► Rayonnement (70%) + convection
- ► Emetteurs de grande surface : murs, sols, plafonds
- Basse température
- Emetteurs invisibles
- ► Température ambiante moins élevée pour un même niveau de confort
- Inertie élevée
- Principe de fonctionnement :
 - · L'eau traverse des tuyaux synthétiques intégrés à la paroi,
 - La paroi emmagasine la chaleur et la restitue


TYPE D'EMETTEURS

Chauffage par le sol

56

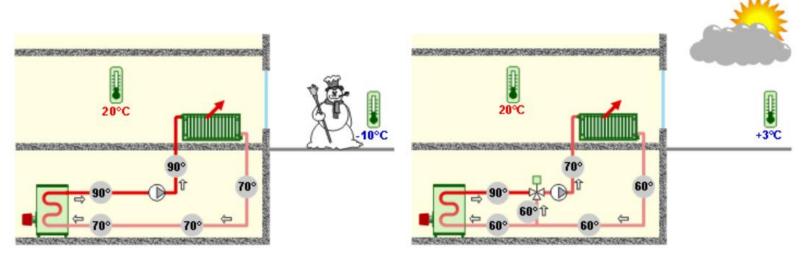

- Possibilité de travailler en très basse température
- Inertie très élevée si intégré dans la chape
 - ⇒ peu adapté si local réactif aux apports internes et externes variables (bâtiment basse énergie et passif)
- ► Il existe des systèmes plus réactifs (intégré sous un plancher)
- Coût d'investissement élevé
- Confort ? Fonction de la régulation



Régime de température

Inertie

C'est la capacité à limiter les variations rapides de température

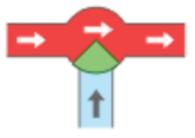

INTRODUCTION
PRODUCTION DE CHALEUR
DISTRIBUTION
EMISSION
RÉGULATION

RÉGULATION

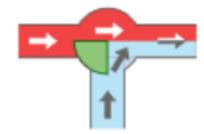
Introduction à la régulation

- Installations dimensionnées pour une situation extrême
 - Tamb = 20° C Text = -10° C
 - Régime de température : 90/70
- ▶ Probleme 1 : En mi-saison, les températures extérieures sont moins rudes !
 - Tamb = 20° C Text = 3° C
 - ⇒ L'eau chaude de départ est mitigée avec une vanne 3 voies !

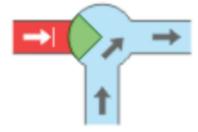
Source / Bron : Energie +


RÉGULATION

Vanne 3 voies


- Présente 3 raccords
 - Montage en répartition : une entrée et deux sorties
 - Montage en mélange : deux entrée et une sortie
- Permet de réguler la température ou le débit
- Manuelle ou motorisée

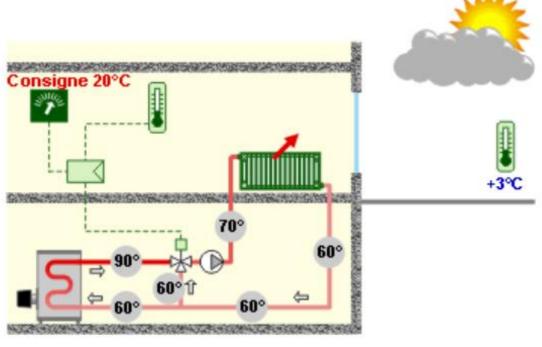
Source / Bron : Honeywell



La vanne est 100% ouverte.

La vanne mélange 50% du débit de la chaudière et 50% du débit de retour des radiateurs.

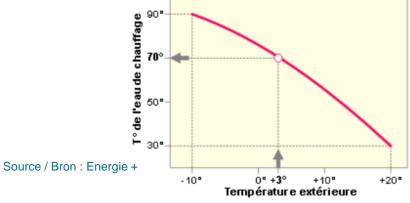
Source / Bron : Energie +


La vanne est fermée ; l'eau des radiateurs tourne sur elle-même et se refrodit.

RÉGULATION

Introduction à la régulation (suite)

- ▶ Probleme 2 : La température extérieure varie tout le temps !
 - ⇒ Un régulateur mesure la température intérieure, la compare à la consigne et ajuste l'ouverture de la vanne 3 voies.



Introduction à la régulation (suite)

- ▶ Probleme 3 : If y a plusieurs locaux à chauffer ...
 - Tous les locaux ont les mêmes besoins
 - ⇒ On choisit un local témoin
 - Les locaux peuvent se subdiviser en zones ayant des besoins similaires
 - ⇒ On réalise deux circuits indépendants, régulés grâce à leur local témoin
 - Il n'est pas possible de trouver un local témoin représentatif
 - ⇒ On se fie à la température extérieure : plus il fait froid dehors, plus l'eau dans les radiateurs doit être chaude !

⇒ On place des vannes thermostatiques pour réguler le débit

dans chaque local

- Une installation de chauffage est sujette à des pertes de production, de distribution, d'émission et de régulation
- Tous les producteurs ne sont pas compatibles avec tous les émetteurs
- Une bonne régulation est fondamentale pour une consommation rationnelle de l'énergie

Guide bâtiment durable

www.guidebatimentdurable.brussels

▶ Thème ENERGIE

Dossier I Garantir l'efficience des installations de chauffage et ECS

Dispositif I Chauffage surfacique

Dossier I <u>Optimiser la production et le stockage pour le chauffage et l'eau</u> chaude sanitaire

Dispositif I Pompe à chaleur

Dispositif | Chaudière à condensation

Sites internet

Energie +
https://energieplus-lesite.be/

Ouvrages

▶ CSTC, (2013), Rapport 14 : Conception et dimensionnement des installations de chauffage central à eau chaude,

Formations

► Chauffage et Eau Chaude Sanitaire : Conception Je 28/11, 05-12-19/12/19

Sophie HAINE

Ingénieur projet écorce sa

MERCI POUR VOTRE ATTENTION

