

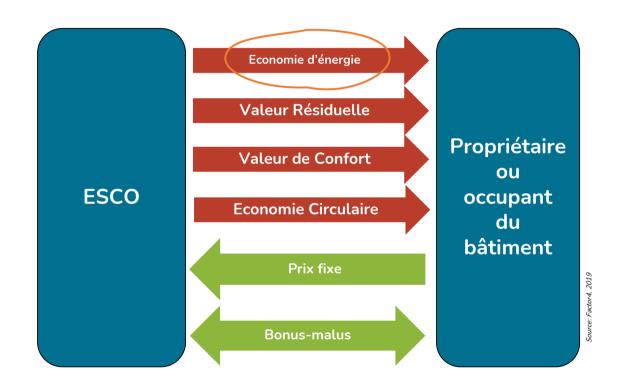
FORMATION PLAGE

Utilisation de l'IMPVP pour les Contrats de Performance

SVEN WUYTS - 7 OKTOBER 2022

SVEN DE FACTOR4

- Expert M&V chez Factor4
- 9 Ingénieurs, architectes et économistes
- Energie et comfort des bâtiments
- Contrats de Performance



CHAMP D'APPLICATION

- Contrats de Performance
 - Energie
 - Confort, économie circulaire-réemploi, ...
- M&V
 - Mesurer et Vérifier
 - IPMVP
- Exemples
- Incertitude, précision et risques
- Points d'attention

CONTRATS DE PERFORMANCE DES BÂTIMENTS

MESURER CE QUI N'EXISTE PAS...

Les « Economies d'énergie » ne peuvent être mesurées

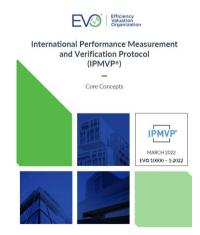
Les « Economies d'énergie » dépendent d'un grand nombre de paramètres

« Consommation d'énergie » évitée

M&V

Pourquoi Mesurer et Vérifier?

- Pour évaluer l'efficacité des mesures mises en place
- Évaluer les risques pour les différentes parties
- → Assurer l'équilibre financier des mesures d'efficacité énergétique (EPC)


PAS simplement relever les compteurs ou comparer les factures !

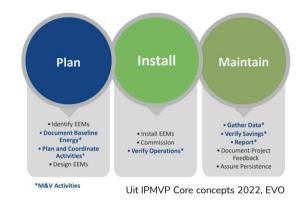
IPMVP

- International Performance Measurement and Verification Protocol
 - Protocole indépendant pour le M&V
 - Principes et cadre pour un bon M&V
 - Terminologie et concepts
 - Plans M&V conformément à l'IPMVP
- Précis, complet, conservatif, cohérent, pertinent et transparent
- PMVE: "Performance Measurement and Verification Analist"
 - Formation par EVO
 - Anciennement « CMVP »
 - Connaître et utiliser les méthodes et la terminologie de l'IPMVP

QUELQUES CONCEPTS DE L'IPMVP

Planification M&V

Limite de mesure

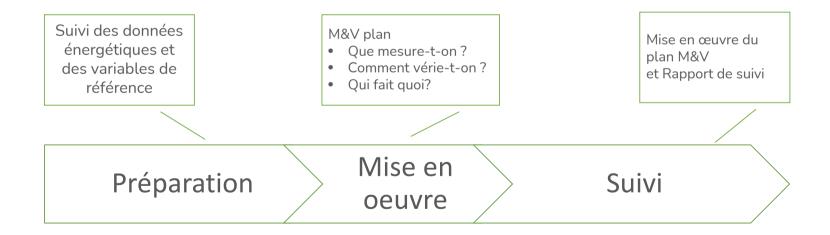

Option A, B, C ou D

Variables indépendantes

Facteurs statiques

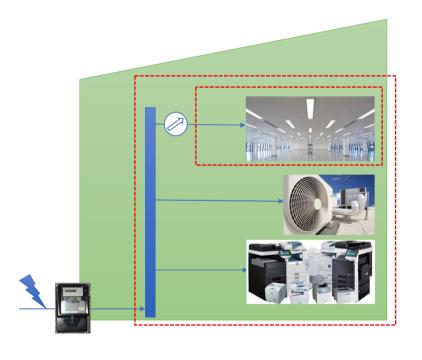
Modélisation et précision de l'énergie

• • •



PLANNING M&V

Prévoir un plan de M&V dans votre projet d'économies d'énergie Avant le départ Au début du projet Pendant et après le projet


PÉRIMÈTRE DES MESURES

Bâtiment entier (site, facility, ...)

Mesure isolée

Déterminer (une partie) de l'option(A, B, C, ...)

Effets interactifs!

CHOIX DES OPTIONS UTILISÉES

M&V Option Use – DOE IDIQ

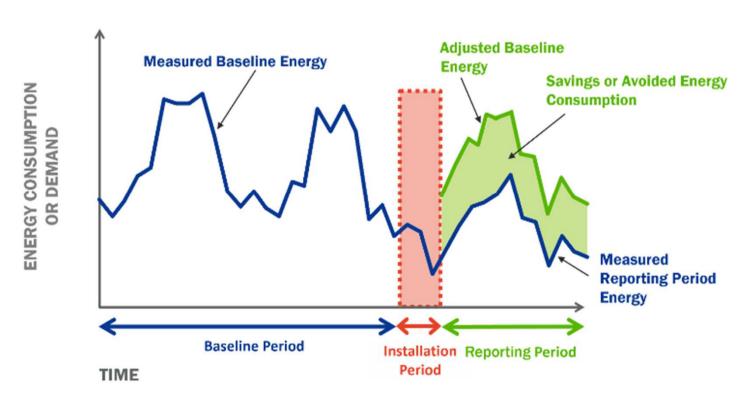
M&V Option usage as a % of total reported savings*

Α	В	С	D
61.5%	16.6%	8.1%	13.8%

ECM	% of total reported cost savings		
Building Controls	17.7%		
HVAC	17.3%		
Lighting	16.2%		
Boiler	10.9%		
CW/HW/Steam Dist.	7.8%		
Water	7.4%		
Chiller	6.8%		

M&V Option usage as a % of total reported savings by ECM*

ECM	%A	%В	%C	%D
Building Controls	69%	15%	0%	16%
HVAC	46%	6%	6%	43%
Lighting	89%	7%	0%	4%
Boiler	46%	18%	33%	3%
CW/HW/Steam Dist.	41%	16%	36%	7%
Water	93%	4%	2%	1%
Chiller	73%	21%	1%	5%


*Based reported savings from 155 active projects under the DOE IDIQ

Bron: Bob SlatteryOak Ridge National Laboratory(in support of DOE FEMP, 2015

AJUSTEMENTS

Savings = (Baseline Period Energy – Reporting Period Energy) ± Adjustments

VARIABLES ET FACTEURS

Ajustements de routine

Variables indépendantes

- Météo (degrés-jours
- Ensoleillement, vent, humidité relative, ...)
- Volumes de production
- Nombre de visiteurs...

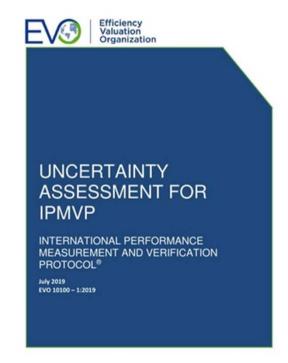
Ajustements non-routiniers

Facteurs statiques

- Taille du bâtiment (m²)
- Autres mesures d'économie d'énergie
- Utilisation du bâtiment
- Climat intérieur (ventilation supplémentaire, par exemple)
- ..

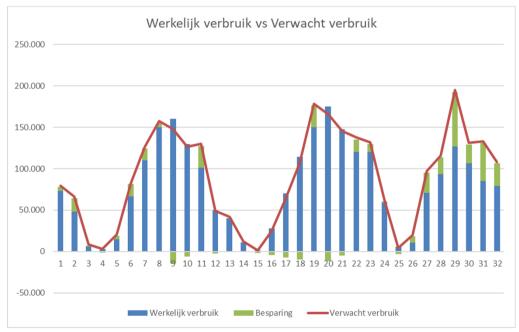
Définir au mieux les facteurs et assurer un bon suivi de ceux-ci

MODÈLES ÉNERGÉTIQUES

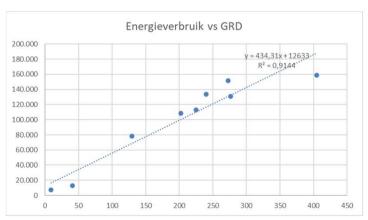

Plusieurs méthodes différentes

- Régression
- M&V « avancé »

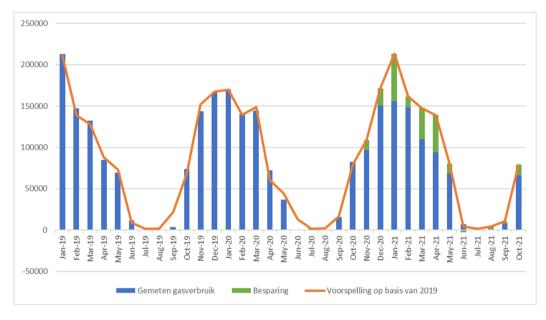
L'incertitude est importante!


- Données statistiques, déterminées par :
 - Qualité des données disponibles
 - Variabilité des données
 - Mesure dans laquelle les variables pertinentes, explicatives et indépendantes sont trouvées

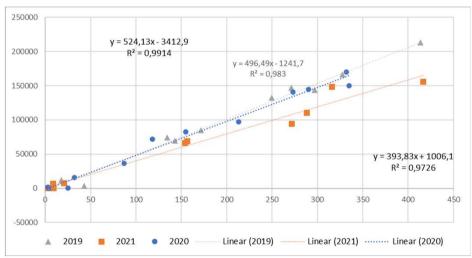
Transparence



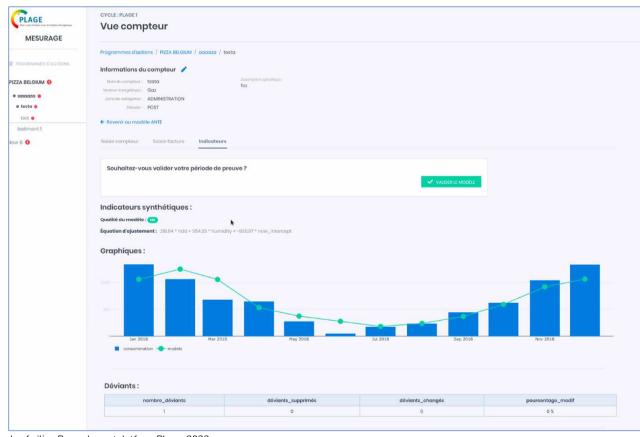
EXEMPLE



Factor4, 2022 15

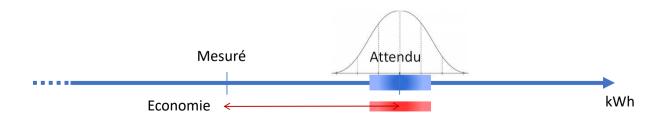

Factor4, 2022

EXEMPLE


Factor4, 2022



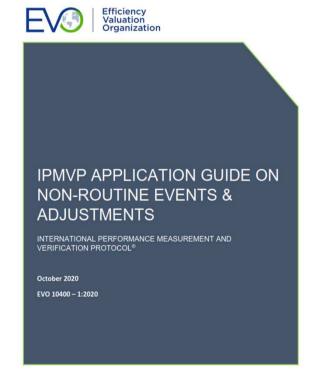
EXEMPLE


PRÉCISION D'UN MODÈLE ÉNERGÉTIQUE

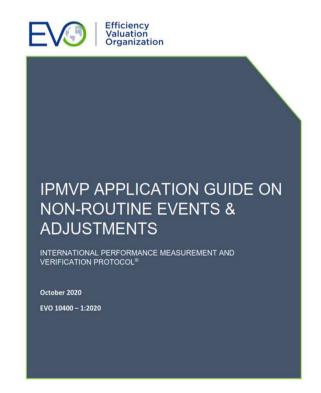
Précision d'un modèle énergétique

- Erreur standard (RMSE) de la prévision de consommation de base
- Niveau de fiabilité (par exemple, choisir 90%)
- Intervalle de confiance (par exemple, 5%)

Par exemple:


- La consommation d'énergie prévue est estimée à 200 000 kWh.
- "Nous sommes sûrs à 90% que la valeur se situe entre 190.000kWh et 210.000kWh".
- La consommation d'énergie mesurée est de 150.000kWh
- Économies = consommation d'énergie prévue consommation d'énergie réelle mesurée
- "Nous sommes sûrs à 90% que l'économie se situe entre 40 000kWh et 60 000kWh".

AJUSTEMENTS NON-ROUTINIERS


- Détection des événements non-routiniers
 - Distinction entre ajustements temporaires et permanents
- Méthodes les plus courantes pour réaliser des ajustements
 - Ignorer les données
 - Utiliser des compteurs intermédiaires
 - Redéfinir le modèle de base
 - Méthode de régression
 - Simulation calibrée
 - Calculs
- Autres solutions
 - 'Backcasting'
 - 'Chaining'
 - Changement d'option ($C \rightarrow A$)

AJUSTEMENTS NON-ROUTINIERS

- Détection des événements non-routiniers
 - Choix judicieux des bâtiments
 - Fonctionnement stable, ...
 - Un parc immobilier suffisamment important
 - Impact NRE est relativement faible
- Faciliter les ajustements non-routiniers
 - Assurer un bon suivi
 - Sensibiliser
 - Mesurer beaucoup
- En pratique, rarement de grandes discussions
 - Facilitateur (CMVP)
 - Indépendant, tierce personne

POINTS D'ATTENTION

- Souvent un manque de données suffisantes. Commencez dès maintenant (à mesurer et) le suivi des données
 - Consommation d'énergie et variables indépendantes
 - Facteurs « statiques »
- Garantie TOUJOURS soumise à des conditions (plan M&V)
- Cela semble difficile, mais cela peut être très simple!
 - Option A, B
 - En cas d'économies importantes → la précision est moins importante
- Si vous ne pouvez pas mesurer/enregistrer, ce n'est pas un bon scénario pour des contrats de performance
- Coût du M&V
 - 10% des économies ...
- Se référer à l'IPMVP
 - Termes et concepts généraux : pas de confusion
 - Pièces jointes : incertitude, ajustements non routiniers, ...

OUTILS ET LIENS

Core concepts de IPMVP

- https://evo-world.org/en/products-services-mainmenu-en/protocols/ipmvp
- Modèle de plan M&V
- https://document.environnement.brussels/opac_css/elecfile/Formulaire_plan_d e_MV_NL.DOCX

Liste des CMVP (PMVA)

• http://portal.aeecenter.org/custom/cpdirectory/index.cfm

Sven Wuyts – Réviseur/Coordinateur des Réviseurs

